

INDUSTRIAL ELECTRONICS DDPE 3103 TOPIC 3 OSCILLATOR

PROF MADYA DR MORINA ABDULLAH | ENCIK KAMARUDDIN TAWI UTM KUALA LUMPUR CAMPUS

innovative entrepreneurialglobal

OSCILLATOR

- Oscillation is a form of **instability** caused by feedback that regenerates or reinforces a signal. The key to oscillator operation is **positive feedback**.
- Oscillators are circuits that generates a periodic ac output waveform without an external signal source (except DC supply).
- Sinusoidal oscillators produce a sine wave output while **multivibrators** produce square waves and rectangular pulses.

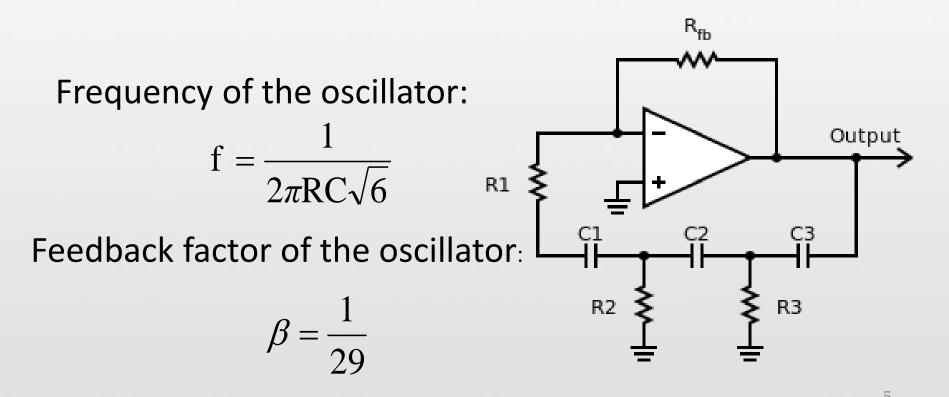
The Barkhausen Criterion

In order for the system to oscillate, the circuit design must satisfy the **Barkhausen criterion**:

- $A\beta = 1$ (A is the amplitude gain and β is the feedback factor)
- The total voltage phase shift around the circuit loop is 360° or 0°.

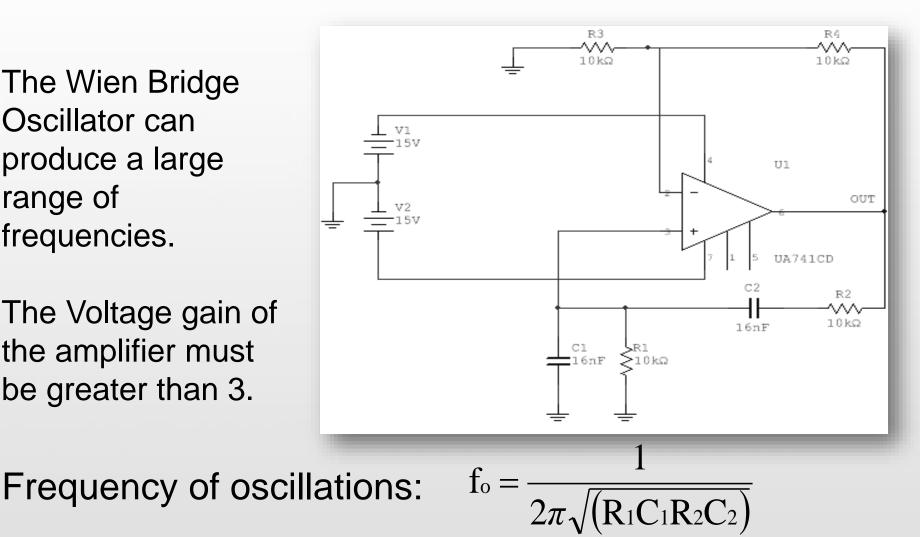
Types of Oscillator Circuits

- 1. Phase-Shift Oscillator
- 2. Wien Bridge Oscillator
- 3. Tuned Oscillator Circuits
 - Colpitts
 - Hartley


4. Crystal Oscillators

1. Phase - Shift Oscillator

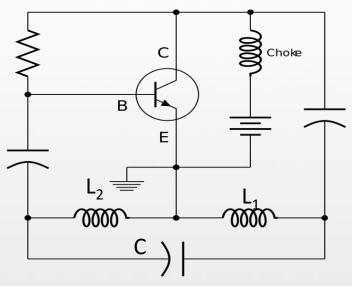
The phase-shift oscillator uses the property of three RC filters to cause a phase shift of 60⁰ degree each .



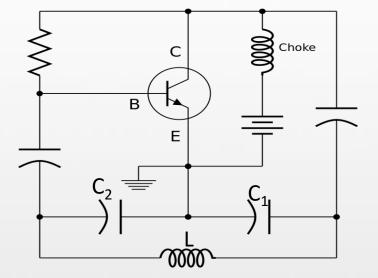
Wien Bridge Oscillator

The Wien Bridge Oscillator can produce a large range of frequencies.

The Voltage gain of the amplifier must be greater than 3.


Tuned Oscillator Circuits

- i. The circuit consists of an **inductive coil**, **L** and a **capacitor**, **C**. The frequency of oscillations in the circuit depends upon the values of inductance of the coil and capacitance of the capacitor.
- ii. These oscillator are commonly used to produce **high range** of frequencies ranging from 1MHz to 500MHz and are also known as radio frequencies (RF).
- iii. There are two common types:
 - Colpitts
 - The resonant circuit is an inductor and two capacitors.
 - Hartley
 - The resonant circuit is a tapped inductor or two inductors and one capacitor.



Hartley Oscillator & Colpitts Oscillator

HartleyOscillator

ColpittsOscillator

Frequency of oscillations for Hartley oscillator :

Frequency of oscillations for Colpitts oscillator :

$$f_o = \frac{1}{2\pi\sqrt{(L_T C)}}$$

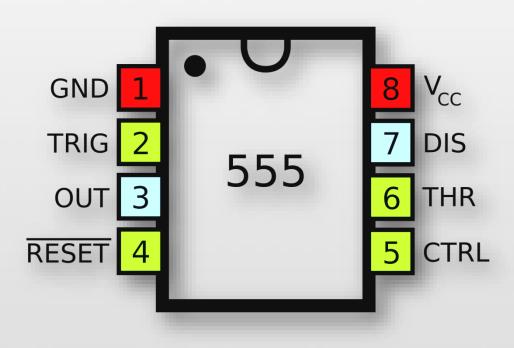
 $f_o = \frac{1}{2\pi\sqrt{(LC_T)}}$

CRYSTAL OSCILLATOR

- A crystal oscillator is an electronic oscillator circuit.
- The vibrating crystal of the piezoelectric material creates an electrical signal with a precise frequency.
- The purpose of the crystal oscillator is to produce high frequency stability of the output signal.

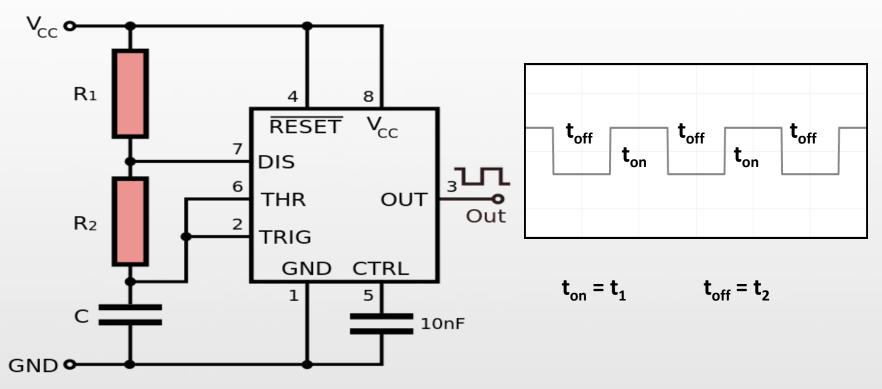
Frequency Stability

MULTIVIBRATOR


- A multivibrator circuit **oscillates** between a **"HIGH"** state and a **"LOW**" state producing a continuous output which are square or rectangular waves.
- Types of multivibrator :
 - i. Astable
 - A square wave oscillator.
 - ii. Bistable
 - A digital device with two stable states.
 - iii. Monostable
 - Has one stable state

555 TIMER

• The most popular square wave oscillator is the 555 timer.

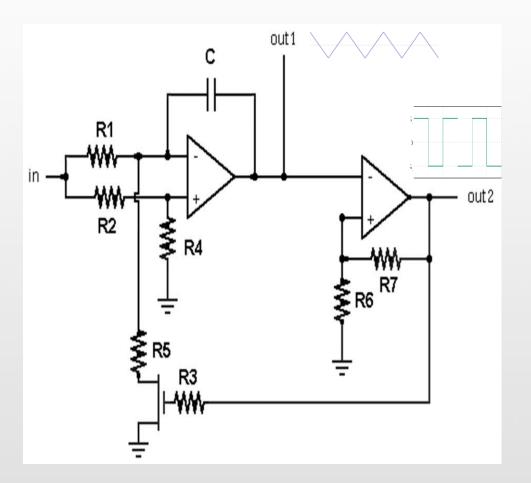


12

ASTABLE MULTIVIBRATOR – TIMER 555

• $t_1 = 0.693 (R_1 + R_2) C$

•
$$t_2 = 0.693 R_2C$$


• $\bar{\mathbf{T}} = \mathbf{t}_1 + \mathbf{t}_2 = \mathbf{0.693} (\mathbf{R}_1 + 2\mathbf{R}_2) \mathbf{C}$

OPENCOURSEWARE

Voltage Controlled Oscillator (VCO)

A VCO is a type of oscillator where the frequency of the output oscillations can be varied by varying the amplitude of an input voltage signal. It consist of an Integrator, a Schmitt trigger and a MOSFET.

References

- Electronic Devices and Circuit Theory , Robert L. Boylestad & Louis Nashelsky , 9th Edition, 2006
- 2. Electronic Devices, Thomas L. Floyd, 5th Edition, 1999
- 3. Wikimedia Commons for images
- 4. Multisim Version 13.0