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7.0 Matrix Algebra

Definition 7.1: Matrix

Matrix 1s a rectangular array of numbers which called elements

L



7.1 Elementary Row Operations (ERQO)

* Important method to find the inverse of a matrix and to
solve the system of linear equations.
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* The following notations will be used while applying
ERO

—____________\

7 \

1. Interchange the i*® row with the j* row of the matrix.
This process is denoted as B; < Bj.

2. Multiply the i*" row of the matrix with the scalar k
where k # 0. This process is denoted as kB;.

3. Add the i*" row, that is multiplied by the scalar h to the

j™ row that has been multiplied by the scalar k, where

h # 0,and k # 0. This process can be denoted as

hB; + kB;. The purpose of this process is to change

-y e s s s s .

the elements in the i™® row.

, | | ] | | _§

7’

\_____________
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Example 7.1:
2 5 3
Giventhematrix A = 1 2 1 |, perform the following
-3 1 2

operations consecutively: B; & B,, B, + (—2)B,, B; + 3B;,
By + (—7)B; and —~Bs.

Solution:

2 5 3 1 2 1 1 2 1
1 2 1|]—( 2 5 3|]——( 0 1 1|—
_3 1 2 Bl(_)BZ _3 1 2 Bz+(—2)Bl _3 1 2 B3+3Bl

1 2 1 1 2 1 1 2 1
011m0111—>011
0 7 5/°7° X0 0 —-2/—3B\0 0 1

J -

Notes:

If the matrix A is transformed to the matrix B by using
ERO, then the matrix A 1s called equivalent matrix to

N (
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Definition 7.2: Rank of a Matrix

The rank of a matrix is the number of row that is non zero
1n that echelon matrix or reduced echelon matrix. The rank
of matrix A is denoted as p(4).

What is echelon matrix
and reduced echelon

1 * *x % 1 0 = 0 =
0O 0 1 *>=>p(A)=3 <0 1 = 0 *>=>p(A)=3
0O 0 0 1 0O 0 0 1 =
1 2 3 4 1 2 0 O
0O 0 1 3 _ 0O 01 O _
00 0 1)°PW=3 "1 g o 1]7PA=3
0O 0 0 O O 0 0 O
1 2 1 0
0 1|=>p4)=2 0 1]|=p(4) =2
0 0 0 0
Example of Echelon Matrix and | Example of Reduced Echelon
1ts rank of matrix Matrix and its rank of matrix

How can we get echelon
matrix and reduced
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Using ERO of course! And the operation
1S not unique.

Example 7.2:
1 2 3

Given A=(2 -3 2 >0btain
3 1 -1

a) Echelon matrix
b)Reduced echelon matrix

c) Rank of matrix A
Solution:
(1 2 3) (1 2 3)
a2 -3 2 |——=|0 -7 -4 |—
3 1 -1/ pion\o -5 —10/ (5)E
1
(-3)B:
12 3 12 3 1 2 3
8 Prrarird DA Eord LIRS
01 2 0o o 10/ /7% g o 1
1 2 43 1 0 13/7 1 0 0
b) 0 1 /7 B1+(=2)B 0 1 0 13 0 1 0
' : Bt(-7)Bs\o 0 1
0 0 1 Bo+(~2)Bs 0 0 1 7
c)p(4) =3

7.2 Determinant of a Matrix
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7.2.1 Determinant

e A scalar value that can be used to find the inverse of a matrix.

* The inverse of the matrix will be used to solve a system of
linear equations.

Definition 7.3 : Determinant

The determinant of a matrix A is a scalar value and denoted by |A| or
det (4).

1. The determinant of a 2x2 matrix is defined by
|a b| = ad — bc
c d

2. The determinant of a 3x3 matrix is defined by

a b c
d e f|l=aei+bfg+cdh—afh—bdi—ceg
g h i

Figure 7.1: The determinant of a 3x3 matrix can be calculated by its
diagonal

3. The determinant of a n x n matrix can be calculated by using
cofactor expansion. (Note: This involves minor and cofactor so we
will see this method after reviewing minor and cofactor of a matrix)
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Definition 7.4: Minor

If
ajp QA2 -0 Agj ot Qqp
A1 Qg2 =+ Qzj -+ dzn
A= : )
ai; Qi -~ G - Qi
\anl Ap2  ° Qnj " App

then the minor of a;j, denoted by Dj; is the determinant of the

submatrix that results from removing the /™ row and /™ column
of A.

Example 7.3:

Find the minor D4, for matrix A

A =

a1 0Azy A3z

i1 Qg a13]
az; dzp dz3

Solution:

azs

= ay1033 — Q30
a33| 21433 23031

Example 7.4:
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1 -1 2

Given A = (0 -1 3 ) Calculate the minor of a4
2 4 =5

and aszs.

Solution:

D=3 ]=(DE-@E) =-7

D= 3|=DE®-©@ =3

7.2.3 Cofactor




Example 7.5:

Find the cofactor A,; from the given matrix

1 4 7
A=|3 0 5}
-1 9 11
Solution:
Az = (—1)2+3D23
Ay, = (—1)243 _11 g = (-1)(9 - (—4)) = —13
Example 7.6:

From Example 7.4, find the cofactor of a;; and as,

WA VAV
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Solution:

A = (DD, = (1?7 O] = =7

Asy = (1**2D5, = (D[ %] = (-D®) = -3
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/" Theorem 7.1: Cofactor Expansion

If A is an n X n matrix

(d11 Q12 0 Aqp]

A1 Az -+ Q2n
A= : : . :

Apn1 QAp2  °° Qpn.

The determinant of A (det(A)) can be written as the sum of its
cofactors multiplied by the entries that generated them.

a) Cofactor expansion along the /" column

n
det(A) = Cllelj + aZjAZj + -+ anjAnj = z aiinj
i=1
b) Cofactor expansion along the i™ row
n
det(4) = a1 Ain + apdp + -+ apdpy = Z aij Cl]
\ =1
N\ /
N . e e e e e e e e e e e e - -

7.3 Inverse Matrices

S e - - S S S S S S S S S e e s e

Definition 7.6: Inverse Matrix

TC A _ - 1 D _ . s o_—a a1 _a 0 T _oul




Non-singular
matrix

Singular Matrix

Inverse Remarks AB)'=B'4"!

Matrices

If the inverse exists, then the

_ Methods —

A square matrix 4 has an inverse if
and only if |A| # 0.

Adjoint
Method

7.3.1 Finding Inverse Matrices using ERO

|
: Write Al in the form of augmented matrix (A|I).
|

STEP 2: NG/~
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Example 7.7:

Calculate the inverse of the following matrix

1 -2 3
A=(3 5 1
6 4 2

Solution:
STEP 1:
1 -2 3|11 0 O
AlD=(3 5 10 1 0
6 4 210 0 1
STEP 2:
1 -2 3|j11 0 O 1 -2 311 0 O
(3 5 110 1 0>—><0 11 -8|-3 1 0>—>
By+(-3)B; Bz/
6 4 2l0 0 1/ 5 65 \0 16 —16l1-6 0 1 B/m
316

1 -2 3
8 3 1
(0 1 -%/11 =°/11 /11 0

1 0 0 1o Y% o 0
_3 1 0 3
/11 /11 ERTOTN 0 1 =%/

0 1 -1 |=3/g 0 1 )e+c0m\y ¢ ~3/-%es Vi1 Ve
10 17/, 5411 i/11 0 1o ol-Ys —11/3 17{48

_11B3/ 0 1 —8/11_ /11 11 0 B—>1+(—17/11)33 8 (1) (1) 0 /3 =
00 1 3/8 1/3 _11/48 Bz+(8/11)33 3/8 1/3 _11/48

WA VAV



_1/ _1 11
/s /3 /48 -6 —-16 17
At=| 0 1/3 —1/6 =£(o 16 —8)
18 16 -—11
3/8 1/3 _11/48

7.3.2  Finding Inverse Matrices using Adjoint

WA VAV
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Definition 7.7: Adjoint of a Matrix

The adjoints of a square matrix A4 is the transpose of cofactor
matrix which can be obtained by interchanging every element a;;

with the cofactor ¢;; and denoted as

adj(A) = [c;]' = [cy]

If |A| # 0, then A~1 exists. Therefore the inverse matrix is,

1
adj(4).

ATt =
Al

4 STEPS TO FIND THE INVERSE MATRIX USING ADJOINT \

geu EEI I IEIE NN IS IS S S S S S .y

METHOD.
STEP 1: Calculate the determinant of A.

i) If|A| = 0, stop the calculation because the inverse does not exist.
ii) If |A| # 0, continue to STEP 2.

STEP 2: Calculate the cofactor matrix [ci j].

STEP 3: Find the adjoint matrix A by finding the transpose of the
cofactor matrix [cl- j], that is

adj(4) = [e]" = [ey]

STEP 4: Substitute the results from STEP 1 to STEP 3 in the formula

- s S D e e e e e e e e e

_ 1

\ A

(AN AR



wuim

Example 7.12:

Calculate the inverse of the following matrix

4 2 1
A=|-2 -6 3
-7 5 0

Solution:

Step 1: Calculate the determinant of A.
|A| = =154 # 0

Step 2: Find the cofactor matrix.

__2_63 __3—23 __4—2 —6

Cu= D2 o Ca= DT o Gs= DTS )
= —15 = —-21 = —52

_ 132 1 _ |41 _ 5|4 2

Cr = P2 | Ca=GDH| D | Cs= D8]
=5 =7 = —34

2 1 4 1 4 2

C31 = (=1D)* 6 3 C32=(—1)5|_2 3| C33=(—1)6|_2 —6|

=12 =—-14 = —=20

—-15 -21 -52
. Matrix of cofactor, C =| 5 7 —34
12 —-14 =20

Step 3: Adjoint of A

WA VAV
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—15 —-21 —-52\" /—15 5 12
Adj(A)=<5 7 34| ==-21 7 -14

12 —-14 -20 —-52 =34 -20

Step 4: Find A™1

) (—15 5 12)
At=——(_21 7 14
154\ _52 _34 —20

EXERCISE 7.1:

1. Calculate the inverse of the following matrices by using
(1) Elementary Row Operations (ERO) methods
(i1))  Adjoint Method

-3 -1 6
a) (2 1 —4)
-5 -2 11
-3 1 2
b) (2 3 O)
-1 1 1

1 2 -3
C) ( 2 -1 —4)
-5 2 1

d)

7.4 SYSTEMS OF LINEAR EQUATIONS

WA VAV
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A system of linear equations with m linear equations and
n number of variables can be written as,

a11x1 + a12x2 + .-+ alnxn = bl'
a21x1 + azzxz + + aann - bz,

Am1X1 + Ay Xo + -+ An Xy = by,

A solution to a linear system are real values of
X1, X5, X3, ..., X, Which satisfy every equations in the linear
systems.

If the solution does not exist, then the system is
inconsistent.

o

WA VAV



Non-homogeneous system Homogeneous system

" p(A)=p(A/b) = number of ] p(A) = number of

variables — the system hasa | [~ variables - the system
unique solution. has trivial solution.

"

" p(A) = p(A]b) < number of ] 'p(A) < the number of variables

variables — the system has — v the system has many
L many solutions. solutions.

.

p(A) < p(A[b) = the number of variables - the system has no
solution.

7.4.1 Gauss Elimination Method

%auss Elimination 1s a method of solving a linear\ﬁ




Example 7.13:

Solve the following system by using Gauss Elimination

method.
2x1 — 3xy —x3 + 2x4 + 3x5 = 4
4x, —4xy, —x3 +4x, + 11x5 =4
2Xqy — 5Xy — 2X3 + 2x4 — X5 =9
2x5 + x3 +4x5 = =5
Solution:

STEP 1: Construct the augmented matrix

WA VAV
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2 -3 -1 2 3|4
4 —4 -1 4 11| 4
2 =5 -2 2 -1/9
0 2 1 0 41-5

STEP 2: Use ERO to transform this matrix into the
following echelon matrix

1 =3/2 —1/2 1 3/2|2
0o 1 1/2 0 5/2|-2

0 0 0 0 1|1
0 0 0 0O 010
STEP 3: Solve using back substitution

3 1 3

X1 —Exz —§x3 +x4+§x5 =2
1 5
Xy +§x3 +§x5 = —2
xs =1

Set x3 =sand x, = t,

X1 _(25/4) — (1/4)s — ¢t
X2 —(9/2) —(1/2)s
X3 | = S

X4 t

X5 1

7.4.2 Gauss-Jordan Elimination Method

Gauss Elimination is a method of solving a linear system
Ax = b by bringing the augmented matrix

[G11 Q21 a1n|b1\

=\



©uim

Example 7.14:

By using the same matrix in Example 7.13, find the
solution for the linear system by using Gauss-Jordan
Elimination method.

Solution:

From STEP 2 in Example 7.13, we can use ERO to find the
reduced echelon matrix for the augmented matrix.

1 -3/2 —-1/2 1 3/2|2 1 0 1/4 1 21/4] -1

0 1 1/2 0 5/2|-2 0 1 1/2 0 0 |—9/2

0 0 0 0 111 3 0 0 0 O 1 1
B1+()B,

0 0 0 0O 0160 0 0 0 O 0 0

B+( S)B
2 2)°3

1 0 1/4 1 0]—-25/4

01 1/2 0 0|-9/2
ps(-2)s,\0 0 00 1 1

o0 0 o0 ol o

From the reduced echelon matrix, we will get the following
equations

X5:1

WA VAV
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xp =—(9/2) — (1/2)x;3
x; = —(25/4) — (1/4)x3 — x4

By setting x; = s and x, = ¢,

X1 —(25/4) —(1/4)s —t
X —(9/2)—-(1/2)s
X3 | = S

X4 t

Xs5 1

EXERCISE 7.2:

1. Solve the linear system by using
(1) Gauss elimination method
(1)  Gauss-Jordan elimination method

a)y+z=2, b)x — 2y + 3z = -2,
2x+ 3z =05, —x+y—2z=3,
x+y+z=3 2x—y+3z=1

7.4.3 Inverse Matrix Method

If |[A| # 0 and Ax = b represents the linear equations
where A 1s an nXn matrix and B 1s an nX1 matrix, then
the solution for the system is given as

x=A"1b

WA VAV
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Example 7.15:

Use the method of inverse matrix to determine the solution to the

following system of linear equations.
3x1 — Xy + 5x3 = =2
—4x, + x5 + 7x3 = 10
2x1 +4x, —x3 =3
Solution:

STEP 1: Check whether |A| # 0.

R =l

}1

1Al = B)(M(=D + (=D()(2) + B) (=D (4)
—DEHED - @MG) - @®ME)
=—-187# 0

STEP 2: Find A~1.by using Adjoint Method or ERO.

1) Matrix of cofactor and adj(A),

—1| _| 2 —1| _24 41;
C=1-|, _1| |3 _1| _|3 _1|
—1 5| |_4 > _4 —1|
—29 10 -—18 29 19
C = ( 19 —13 —14>,adj(A) =T = ( 10 —13
—12 —41 -1 —18 —14

—-12
—-41
-1

|

NN



(729 19 -12
i) Al=— 10 -13 -41

29 19 12

187 187 187
10 13 41

187 187 187
18 14 1

187 187 187

STEP 3: Solution for X is given by

- 28 19  12- - 2127
187 187 187/ 187

10 13 41 273

x=A"b=|— 10| =[ 222

187 187 187|| 5 187

18 14 1 107
| 187 187 187 | 187 |

EXERCISE 7.3:

WA VAV
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1) Solve the following system linear equations by using Inverse

Matrix Method
(@) xy+x,+2x3=7 (b) 2x; +3x, +x3 =11
X1 — Xy —3x3 = —6 2xy —2x, —3x3 =5
2x, +3x, + x5 =4 3x; — 5x, + 2x3 = —3

7.4.3 Cramer’s Rule

Given the system of linear equations Ax = b, where 4 is an
n x n matrix, X and b are nx1 matrices. If |A| # 0, then
the solution to the system is given by,

LAl 1Al Al
Y TRtV TR V]

fori = 1,2, ...,n where 4; is the matrix found by replacing
the i™ column of A with b.

Example 7.16:

WA VAV
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Use Cramer’s rule to determine the solution to the following
system of linear equations.

3x; — Xy + 5x3 = =2
—4x, +x, + 7x3 = 10
2x1 +4x, —x3 =3
Solution:

1. Test whether |A| # 0, or not.

—1
R =l
-1
Al = B) (MDD + (—1)(7)(2) + (5)(—4)(4)

—DEHED - @MG) - @HME)
=—-187+0

NN
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By using the Cramer’s rule,

—2] -1 5
10] 1 7
14, | 3] 4 -1 212
VTR —187 - 187
3 [=2] 5
—4 [10] 7
14,1 12 [3] =11 273
2774l ~ ~187 ~ 187
3 -1 [—2
—4 1 [10
. A5l 12 4 3] 107
STAl —187 187

EXERCISE 7.4:

Solve the following system linear equations by using Cramer’s

Rule Method.
@) x;+x,+2x3=7 (b) 2x; +3x, +x; =11
xl_x2_3X3:_6 le_2x2_3x3:5
2%, +3x, +x3 =4 3x; — 5x, + 2x3 = =3

7.5 EIGENVALUES & EIGENVECTORS
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7.5.1Eigenvalues & Eigenvectors

Definition 7.8: Eigenvalues & Eigenvectors

Let A be an n x n matrix and the scalar A 1s called an
eigenvalue of A if there is a non zero vector x such
that

Ax = Ax

Example 7.17:

Show that x = B] is an eigenvector of A = [333 _01] Hence, find

the corresponding eigenvalue.

Solution:

se=l} OJE=[)=3[ =5«

Therefore, the corresponding eigenvalue is 3.

Definition 7.9: Eigenvalues

The eigenvalues of an n x n matrix A are the n zeroes of the
polynomial P(1) = |A — AI| or equivalently the n roots of the
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Example 7.18:

Determine the eigenvalues and eigenvector for the matrix

1 1 2
A= 0 2 2|
-1 1 3

Step 1: Write down the characteristic equation.

1 1 2 1 0 O
(O 2 2)—1(0 1 0)
-1 1 3 0 0 1

1-4 1 2
0 2—2 2
-1 1 3—1

P =23—-612+111—-6=0

Solution:

=0

=0

Step 2: Find the roots/eigenvalues

WA VAV
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By using trial and error, we can take A = 1 and it will give

P(D)=(1)3-6(1)2+11(1) =6 =0
Thus (A — 1) is a factor for P(A).

By using long division, the other two factors are (1 — 2) and
(A — 3). Therefore,

PAHO=A-11-2)(1-3)=0
Hence, the eigenvalues of matrix A are 4 = 1, 2,3.

Step 3: Use the eigenvalues to find the eigenvectors using formula
Ax = Ax.

When A = 1:

1 1 2\ /% X1 0 1 2\ /* 0
G o) 1960
—1 1 3/ \X3 X3 -1 1 2/ \X3 0

Using ERO

WA VAV
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0O 1 2 1 0 O 1 0 O
0 1 2]——1| O 1 2]—|0 1 2)|—
B1+(-1)B3 1 B3+(1)B, B3+(-1)B;

-1 1 2 -1 2 0O 1 2
1 0 O
0 1 2
0 0 O
Hence,
1 0 0\ /% 0 x, =0
03 n e
x3=k
Therefore,

0 0 0
X = <—2k> =k (—2) and the corresponding eigenvector is (—2)
k 1 1

When A = 2:
1 1 2\ /%1 X1 -1 1 2\ /%1 0
—1 1 3/ \X3 X3 -1 1 1/ \X3 0
Using ERO
-1 1 2 -1 1 2
-1 1 ’ '\o 0 -1
Hence,

WA VAV



QuLm

-1 1 2 X1 0 2x3:_X3:O :>X3:O
(0 0 2)(=)=(o) - =k
0 0 -1 X3 0 —x1+x2+2x3=0$x1=xz=k

Therefore
k 1 1
x =| k| =k|1)and the corresponding eigenvectoris | 1 |.
0 0 0
When A = 3:

1 1 2\ /% X1 -2 1 2\ /%1 0
(o 2 2))-o)-( 3 2))-0
-1 1 3 X3 X3 -1 1 0 X3 0

Using ERO
2 1 2 R 2 1 2
)Y 2 _Fay
-1 1 0/ B*+(3B1\ 0 = —1/Bs+(x)B2 \ ( 0 0
2
Hence,
—2 1 2 X1 0 X3 = k
0 —1 2llx]l=10]=> —X, +2x3 =0 = x, = 2k
0 0 0/ \x3 0 —2x1+ x5, +2x3=0 = x; = 2k
Therefore

WA VAV
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