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1.1 Hyperbolic Functions 

1.1.1 Definition of Hyperbolic Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hyperbolic Sine, pronounced “shine”. 

sinh x = 
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Hyperbolic Cosine, pronounced “cosh”. 
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Hyperbolic Tangent, pronounced “tanh”. 
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Hyperbolic Cosecant, pronounced “coshek”. 

cosech x = 
xsinh

1
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=
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Hyperbolic Secant, pronounced “shek”. 

   sech x = 
xcosh

1
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Hyperbolic Cotangent, pronounced “coth”. 

  coth x = 
x
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1.1.2 Graphs of Hyperbolic Functions 

Since the hyperbolic functions depend on the 
values of xe  and xe− , its graphs is a 
combination of the exponential graphs. 
 

(i) Graph of sinh x 
 

 

From the graph, we see 

(a) sinh 0 = 0. 

(b) The domain is all real numbers. 

(c) The curve is symmetrical about the origin,    

 i.e.    sinh (−x) = −sinh x 

(d) It is an increasing one-to-one function. 

 



 

(ii) Graph of cosh x 
 

 

We see from the graph of y = cosh x that: 

(a) cosh 0 = 1 

(b) The domain is all real numbers. 

(c) The value of cosh x is never less than 1. 

(d) The curve is symmetrical about the y-axis, 

i.e.   cosh (−x) = cosh x 

(e) For any given value of cosh x, there are two 

values of x. 

 

 

 



 

(iii) Graph of tanh x 
 

 

 

We see 

(a) tanh 0 = 0 

(b) tanh x always lies between y = −1 and y = 1. 

(c) tanh (−x) = −tanh x 

(d) It has horizontal asymptotes 1±=y . 
 

 

 

 

 

 



 

1.1.3      Hyperbolic Identities 

For every identity obeyed by trigonometric 

functions, there is a corresponding identity obeyed 

by hyperbolic functions. 

1. cosh2 𝑥𝑥 − sinh2 𝑥𝑥 = 1 

2. 1 − tanh2 𝑥𝑥 = sech2 𝑥𝑥 

3. coth2 𝑥𝑥 − 1 = cosech2 𝑥𝑥 

4. sinh(𝑥𝑥 ± 𝑦𝑦) = sinh x cosh y ± cosh x sinh y 

5. cosh(𝑥𝑥 ± 𝑦𝑦) = cosh x cosh y ± sinh x sinh y 

6. tanh(𝑥𝑥 ± 𝑦𝑦) = tanhx ±tanhy
1 ±tanh𝑥𝑥 tanh𝑦𝑦

 

7. sinh 2𝑥𝑥 = 2 sinh 𝑥𝑥 cosh 𝑥𝑥 

8. cosh 2𝑥𝑥 =  cosh2 𝑥𝑥 + sinh2 𝑥𝑥 

= 2 cosh2 𝑥𝑥 − 1 

= 2 sinh2 𝑥𝑥 + 1 

9. tanh 2𝑥𝑥 =  2 tanh𝑥𝑥
1+tanh2 𝑥𝑥

 

  

 



 

Some of the hyperbolic identities follow exactly the 

trig. identities; others have a difference in sign. 

 

     Trig. Identities           Hyperbolic Identities 

 

θθ cosh
1sech =  

θθ sinh
1cosech =  

θ
θ tanh

1coth =  

 

1sinhcosh 22 ≡− θθ  

θθ 22 sechtanh1 ≡−  

θθ 22 cosech1coth ≡−  

 

AAA coshsinh22sinh ≡  

1cosh2
sinh21

sinhcosh2cosh

2

2
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A
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Examples 1.1 

1. By using definition of hyperbolic functions, 

(a) Evaluate sinh(-4) to four decimal places. 

(b) Show that 2 cosh2𝑥𝑥 − 1 = cosh 2𝑥𝑥 

 
2. By using identities of hyperbolic functions,  

show that 

1 − tanh2𝑥𝑥
1 + tanh2𝑥𝑥

= sech 2𝑥𝑥 
 

3. Solve the following for x, giving your answer in 

4dcp. 

cosh 2𝑥𝑥 = sinh𝑥𝑥 + 1 
 

4. Solve for x if given 2cosh x – sinh x = 2. 

5. By using definition of hyperbolic functions, 

proof that cosh2𝑥𝑥 −  sinh2𝑥𝑥 = 1 

 

6. Solve cosh x = 4 – sinh x. Use 4 dcp. 

 

 



 

1.2  INVERSE FUNCTIONS 

Definition 1.2 (Inverse Functions) 

If YXf →:  is a one-to-one function with the domain 

X and the range Y, then there exists an inverse function, 

XYf →− :1  

 where the domain is Y and the range is X such that  

)()( 1 yfxxfy −=⇔=  

Thus, xxff =− ))((1  for all values of  x  in the domain f. 

 

Note:  

The graph of inverse function is reflections about the 

line  y = x. 

 

 

 

 

 



 

1.2.1   Inverse Trigonometric Functions 

Trigonometric functions are periodic hence they are 

not one-to one. However, if we restrict the domain 

to a chosen interval, then the restricted function is 

one-to-one and invertible. 

 

(i) Inverse Sine Function 

Look at the graph of xy sin=   shown below 

 
 
The function xxf sin)( =  is not one to one. But if 

the domain is restricted to 



−

2
,

2
ππ , then f(x) is 

one to one. 

 



 

Definition: 

The inverse sine function is defined as 

xy 1sin −=  ⇔  x = sin y 

where 
22
ππ

≤≤− y   and  11 ≤≤− x . 

 

The function x1sin−  is sometimes written as arcsin x. 
 

The graph of xy 1sin−=   is shown below 
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(ii) Inverse Cosine Function 

Look at the graph of xy cos=   shown below 

          

The function xxf cos)( =  is not one to one. But if 

the domain is restricted to [ ]π,0 , then f(x) is one 

to one. 

 
Definition: 

The inverse cosine function is defined as 

xy 1cos−=  ⇔  x = cos y 

where π≤≤ y0   and  11 ≤≤− x . 

 

 



 

The graph of xy 1cos−=   is shown below 

2
π

− -1 1
2
π

2
π

π

 

( )
( )

1cos

arccos

f x x

f x x

−=

=  

(iii) Inverse Tangent Function 

Look at the graph of xy tan=   shown below 
 

            

 



 

The function xxf tan)( =  is not one to one. But if 

the domain is restricted to 



−

2
,

2
ππ , then f(x) is 

one to one. 
 

Definition: 

The inverse tangent function is defined as  

xy 1tan−=  ⇔  x = tan y 

where   
22
ππ

≤≤− y   and  ∞≤≤∞− x . 

 The graph of xy 1tan−=   is shown below 
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1tan

arctan

f x x
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(iv) Inverse Cotangent Function 
 

Domain: 

Range: 

 

 

(v) Inverse Secant Function 

Domain: 

Range: 

 

 



 

(vi) Inverse Cosecant Function  

Domain: 

Range: 

              

 
 

  

 



 

Table of Inverse Trigonometric Functions 
 

Functions Domain 
Range 

xy 1sin−=  [−1, 1] 






− 2,2
ππ  

xy 1cos−=  [−1, 1] [0, π ] 

xy 1tan −=  (−∞ , ∞) 






− 2,2
ππ  

xy 1csc−=  1≥x  














 ∪− 2,00,2
ππ  

xy 1sec−=  1≥x  














 ∪ πππ ,22,0  

xy 1cot−=  (−∞ , ∞) (0, π ) 

 

 It is easier to remember the restrictions on the 

domain and range if you do so in terms of 

quadrants. 

 
x

x
sin

1sin 1 ≠−  whereas 
x

x
sin

11)(sin =− . 

 



 

1.2.2  Inverse Trigonometric Identities 

The definition of the inverse functions yields several 
formulas. 
Inversion formulas 

xx =− )(sinsin 1  
for 11 ≤≤− x  

yy =− )sinsin (1  for 
22
ππ

≤≤− y  

xx =− )(tantan 1  for all x 

yy =− )tantan (1  
22
ππ

<<− y  

 These formulas are valid only on the specified 
domain 

 

Basic Relation 

2
cossin 11 π

=+ −− xx  
for 10 ≤≤ x  

2
cottan 11 π

=+ −− xx  
for 10 ≤≤ x  

 



 

2
cscsec 11 π=+ −− xx  for 10 ≤≤ x  

 



 

 Negative Argument Formulas 

xx 11 sin)(sin −− −=−  xx 11 sec)(sec −− −=− π  

xx 11 tan)(tan −− −=−  xx 11 csc)(csc −− −=−  

xx 11 cos)(cos −− −=− π  xx 11 cot)(cot −− −=− π  

 

Reciprocal Identities 













−− =
x

x 1sincsc 11  for 1≥x  













−− =
x

x 1cossec 11  for 1≥x  

cot−1 𝑥𝑥 = tan−1 �
1
𝑥𝑥
� for 1≥x  

 

 

 

 



 

Examples 1.2: 

1. Evaluate the given functions. 

(i) )5.0(sinsin 1−
  (ii) 1sin (sin 2)−  

(iii) )5.0(sinsin 1−
 (iv) )2(sinsin 1−  

2. Evaluate the given functions. 

(i) arcsec(−2)  

(ii) )2(csc 1−
 

(iii) 












−−

3
11cot  

 

3. For 11 ≤≤− x , show that 

(i) xx 1(1 sin)sin −−− −=  

(ii) 21 1)(sincos xx −=−  

  

 



 

1.2.3 Inverse Hyperbolic Functions 

The three basic inverse hyperbolic functions are 

x1sinh− , x1cosh− ,  and x1tanh− . 

Definition (Inverse Hyperbolic Function) 

yxxy sinhsinh 1 =⇔= −      for all x and y ℜ∈  

yxxy coshcosh 1 =⇔= −   for 1≥x  and 0≥y  

yxxy tanhtanh 1 =⇔= −   for 11 ≤≤− x , ℜ∈y  

 

Graphs of Inverse Hyperbolic Functions 
(i) xy 1sinh−=  

Domain:     Range: 

 

 



 

(ii) xy 1cosh−=  

Domain:      Range: 

 

 

 

 

 

 

 (iii) xy 1tanh−=  

Domain:      Range: 

 
 

 

 



 

1.2.4  Log Form of the Inverse Hyperbolic 

Functions 

It may be shown that 

(a) cosh−1 𝑥𝑥 = ln�𝑥𝑥 + √𝑥𝑥2 − 1� 

(b) sinh−1 𝑥𝑥 = ln�𝑥𝑥 + √𝑥𝑥2 + 1� 

(c) tanh−1 𝑥𝑥 = 1
2

ln �1+𝑥𝑥
1−𝑥𝑥

� 

(d) coth−1 𝑥𝑥 = 1
2

ln �𝑥𝑥+1
𝑥𝑥−1

� 

(e) sech−1 𝑥𝑥 = ln �1+√1−𝑥𝑥
2

𝑥𝑥
� 

(f) cosech−1 𝑥𝑥 = ln �1
𝑥𝑥

+ √1+𝑥𝑥2

|𝑥𝑥| � 

  

 



 

Inverse Hyperbolic Cosine (Proof) 

If we let 𝑦𝑦 = cosh−1 𝑥𝑥, then 

𝑥𝑥 = cosh𝑦𝑦 = 𝑒𝑒𝑦𝑦+ 𝑒𝑒−𝑦𝑦

2
. 

Hence, 

2𝑥𝑥 = 𝑒𝑒𝑦𝑦 + 𝑒𝑒−𝑦𝑦. 

On rearrangement, 

(𝑒𝑒𝑦𝑦)2 − 2𝑥𝑥𝑒𝑒𝑦𝑦 + 1 = 0 

Hence, (using formula  −𝑏𝑏±√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

) 

𝑒𝑒𝑦𝑦 =
2𝑥𝑥 ± √4𝑥𝑥2 − 4

2
= 𝑥𝑥 ± �𝑥𝑥2 − 1 

Since 𝑒𝑒𝑦𝑦 > 0, 

∴ 𝑒𝑒𝑦𝑦 = 𝑥𝑥 + �𝑥𝑥2 − 1 

 

Taking natural logarithms, 

𝑦𝑦 = cosh−1 𝑥𝑥 = ln(𝑥𝑥 + √𝑥𝑥2 − 1) 

 

 

 



 

Proof for 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬−1 𝒙𝒙 

 

𝑦𝑦 = sinh−1 𝑥𝑥 

𝑥𝑥 = sinh𝑦𝑦 =
𝑒𝑒𝑦𝑦 − 𝑒𝑒−𝑦𝑦

2
 

∴ 2𝑥𝑥 = 𝑒𝑒𝑦𝑦 − 𝑒𝑒−𝑦𝑦  (multiply with 𝑒𝑒𝑦𝑦) 

2𝑥𝑥𝑒𝑒𝑦𝑦 = 𝑒𝑒2𝑦𝑦 − 1 

𝑒𝑒2𝑦𝑦 − 2𝑥𝑥𝑒𝑒𝑦𝑦 − 1 = 0 

𝑒𝑒𝑦𝑦 = 𝑥𝑥 ± �𝑥𝑥2 + 1 

 

Since 𝑒𝑒𝑦𝑦 > 0, 

∴ 𝑒𝑒𝑦𝑦 = 𝑥𝑥 + �𝑥𝑥2 + 1 

Taking natural logarithms, 

𝑦𝑦 = sinh−1 𝑥𝑥 = ln �𝑥𝑥 + �𝑥𝑥2 + 1� 

 

In the same way, we can find the expression for 
tanh−1 𝑥𝑥 in logarithmic form. 

 

 



 

Examples 1.3:   

Evaluate 

1)  
1sinh (0.5)−

 

2) 1cosh (0.5)−
 

3) 1tanh ( 0.6)− −  
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