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1.1 Hyperbolic Functions
1.1.1 Definition of Hyperbolic Functions

Hyperbolic Sine, pronounced “shine”.
eX —e~*%

sinh X =

Hyperbolic Cosine, pronounced “cosh”.

g rame
cosh x =

Hyperbolic Tangent, pronounced “tanh”.

sinhx _eX—e* eX_1

coshx e*+e”

tanh x = ==
e“* +1

X

Hyperbolic Secant, pronounced “shek”.

sech x = 1 _ 2

cosh x e*+e7*

Hyperbolic Cosecant, pronounced “coshek™.

cosech x = 1 _ 2

sinh x e*X—e7*

Hyperbolic Cotangent, pronounced “coth”.
coshx e*+e™

cothx= — ———
sinhx e"—¢
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1.1.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the
values of eX and eX, its graphs is a
combination of the exponential graphs.

(i) Graph of sinh x

101

-10*

From the graph, we see

(a) sinh0=0.

(b) The domain is all real numbers.

(c) The curve is symmetrical about the origin,
i.e. sinh (-x) =-sinh x

(d) [Itisanincreasing one-to-one function.
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(ii) Graph of cosh x

We see from the graph of y = cosh x that:

(a) cosh0=1

(b) The domain is all real numbers.

(c) The value of cosh x is never less than 1.

(d) The curve is symmetrical about the y-axis,
i.e. cosh (—x) =coshx

(e) For any given value of cosh x, there are two

values of x.
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(iii) Graph of tanh x

L57

-1.5*

We see

(a) tanh0=0
(b) tanh x always lies between y=—-1 and y = 1.
(c) tanh (—x)=-tanhx

(d) It has horizontal asymptotes y=+1.
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1.1.3 Hyperbolic Identities

For every identity obeyed by trigonometric
functions, there is a corresponding identity obeyed
by hyperbolic functions.

1.cosh? x —sinh?x =1

2.1 — tanh? x = sech? x
3.coth? x — 1 = cosech? x

4.sinh(x + y) =sinhx coshy + coshx sinhy

5.cosh(x + y) =coshx coshy =+ sinhx sinhy

tanh x +tanhy
1 +tanhx tanhy

6.tanh(x + y) =

7.sinh 2x = 2 sinh x cosh x
8.cosh 2x = cosh? x + sinh? x
= 2cosh?x —1

= 2sinh?x + 1

2tanhx

O.tanh 2x = m

I innovative ® entrepreneurial ® global




OPENCOURSEWARE

Some of the hyperbolic identities follow exactly the

trig. identities; others have a difference in sign.

Trig. Identities Hyperbolic Identities
1 sech@ = _1
secl = coshé@
cos @
1 1
_ h=_—- _
cosecl = = cosechd Sinh@
1
tf = _ 1

cos’ +sin‘f = 1
1 + tan®0 = sec0

1 + cot20 = cosec?d

cosh2@—sinh20 =1
1—tanh2@ = sech260

coth26 —1 = cosech260

sin 24 = 2sin Acos A
cos 2A = cos’A — sin’A
=1 — %in%A
= 2cos’A — 1

sinh2A = 2sinh Acosh A

cosh2A= cosh2A+sinh2A
1+2sinh2 A
2cosh2A-1
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Examples 1.1

1. By using definition of hyperbolic functions,

(a) Evaluate sinh(-4) to four decimal places.

(b) Show that 2 cosh?x — 1 = cosh 2x

2.By using identities of hyperbolic functions,
show that

1 — tanh?x

= sech 2
1 + tanh2x Sechax

3.Solve the following for x, giving your answer in
4dcp.
cosh2x = sinhx + 1

4.Solve for x if given 2cosh x - sinh x = 2.

5.By using definition of hyperbolic functions,

proof that cosh?x — sinh?x = 1

6.Solve cosh x = 4 - sinh x. Use 4 dcp.
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1.2 INVERSE FUNCTIONS

Definition 1.2 (Inverse Functions)

If f: X —Y isaone-to-one function with the domain
X and the range Y, then there exists an inverse function,
f1:y > X
where the domain is Y and the range is X such that

-1
y="f(X) < x=17(y)

Thus, f 2(f(x)) = X for all values of x in the domain f

Note:
The graph of inverse function is reflections about the

line y =x.
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1.2.1 Inverse Trigonometric Functions

Trigonometric functions are periodic hence they are
not one-to one. However, if we restrict the domain
to a chosen interval, then the restricted function is

one-to-one and invertible.

(i) Inverse Sine Function

Look at the graph of y =sin X shown below

The function f(Xx) =sinXx is not one to one. But if

the domain is restricted to [—%%}, then f(x) is

one to one.
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Definition:

The inverse sine function is defined as
. =1 )
y=sin = X< x=siny

Where—%SyS and -1 < x < 1L

The function Sin_1 X 1s sometimes written as arcsin x.

The graph of y =sin™ X is shown below

NN

IS

|
|
NN

f (x)=sin™x

f (x)=arcsin x
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(ii) Inverse Cosine Function

Look at the graph of y =C0SX shown below

The function f (X) =cosx is not one to one. But if
the domain is restricted to [0, 7], then f{x) is one

to one.

Definition:

The inverse cosine function is defined as

-1
Yy =C0S ~ X< X=COSy

where 0 < y < 7 and -1<x<1.
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The graph of y = cos ™ x is shown below

Ny

|
I
NN

f (x)=cos™x

f (x)=arccosx

(iii) Inverse Tangent Function

Look at the graph of y =tanx shown below

y=tanz

A

Y
]

-~
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The function f(x)=tanx is not one to one. But if

T

the domain is restricted to {—%,E}, then f{x) is

one to one.

Definition:

y=tan‘1x < x=tany

< and —o < X

where — 7 < y < i
2 2

The inverse tangent function is defined as

The graph of y = tan' x is shown below

f (x)=tan™x

f (x)=arctan x
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(iv) Inverse Cotangent Function
Domain:
Range:
b
_____________ B R
1
2z
0 e
(v) Inverse Secant Function
Domain:
Range:
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(vi) Inverse Cosecant Function
Domain:

Range:

N |:| 1!

ro=
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Table of Inverse Trigonometric Functions

Functions Domain
Range
. T T
y=sin"1 x -1, 1] { 7'7}
y =COS Ly -1, 1] [0, 77 ]
_ T
y=tan * x | (-, ) [ 7’7}

y =CSC Ly | x|>1 {—%,OJU(O,%}

yosectx Xzt [05)[Z
y=cot~1x (—o0, ) (0, 7)

> It is easier to remember the restrictions on the
domain and range if you do so in terms of

quadrants.

>sin~1x = 1 whereas (sinx)~1 = B
sin X sin X

I innovative ® entrepreneurial ® global



OPENCOURSEWARE

1.2.2 Inverse Trigonometric Identities

The definition of the inverse functions yields several
formulas.

Inversion formulas

! . 1< x<
sin (sin~* x) = x for 1< x=1
C -1
sin"~(siny) =y for—— <y < =
2 2
tan (tan‘l X) = X for all x
-1 T T
tan tan = - < < —
tany) =y , <Y<

» These formulas are valid only on the specified
domain

Basic Relation

B 1 T for0<x<1
Sin =~ X+C0S " X=—

1 o for0<x<1
tan ~ X + cot x:2
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Negative Argument Formulas

. - . -1 - -1
sin ~ (-x)=-sin "X € (-X)=7-SeC " X
- -1 -1 -1
tan " (-X)=-tan " X csC  (-X)=-CSC X
_ ~1 _ _
cos ~ (-X)=m-cos X ot (-X) =7 - cot by

Reciprocal Identities

- 1
csc1x=sin-1 [X for x > 1
sec™1x=cos™1 [%] for x| > 1

1 1 1
cot™" x = tan~ (;) for x >1
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Examples 1.2:

1. Evaluate the given functions.
(i) sin (sin ! 0.5) (i) sin (sin—1 2)
Gii) sin—1(sin 0.5)  (iv) sin—1(sin 2)
2. Evaluate the given functions.

(i) arcsec(-2)

(i) csc (V2)

3. For -1 < X <1 show that

(i) sin‘l(—x) — _sin"1x

(ii) €0s (sin~1x) =1 x°
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1.2.3 Inverse Hyperbolic Functions

The three basic inverse hyperbolic functions are

sinh X, cosh_jL x, and tanh—1x.

Definition (Inverse Hyperbolic Function)

y:sinh_lx & x=sinhy forallxandy e R
y:cosh_lx < x=coshy forx>1land y>0

y:tanh_lx & x=tanhy for-1<x<1l ye®R

Graphs of Inverse Hyperbolic Functions
A y= sinh ™ x

Domain: Range:

. g -1
sinh x

—Ft

.

I innovative ® entrepreneurial ® global



y -1
(ii) y = cosh ~ X
Domain: Range:
cosh™x
4‘_
20
1 5 i *
(iii) y=tanh=Lx
Domain: Range:
tanh 'x
|
I <l
|
|
|
I 27 |
| |
| |
1'1 i ’
| |
| _al |
|
|
|
- |
|
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1.2.4 Log Form of the Inverse Hyperbolic

Functions

[t may be shown that
(a) cosh™lx =In(x + Vx2 — 1)
(b) sinh™!x = In(x + Vx2 + 1)

(c) tanh™1x = %ln (H—x)

1—x

(d) coth™x =>In(X2)

2 x—1
(e) sech™lx =1In (1+ ;_xz)
cosech™'x =In (1 + 1+x2)
(f) x " |x]
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Inverse Hyperbolic Cosine (Proof)

If we let y = cosh™! x, then

eY+e™Y
P—

X = coshy =

Hence,
2x =e¥ +e77.
On rearrangement,
(e¥)? —2xe¥ +1=0
b+VbZ—-4ac

Hence, (using formula —————)
2x £ V4x? —4
eV = =x+x?—-1

> x

Since e > 0,

ceY=x+4x2-1

Taking natural logarithmes,

y = cosh™ x = In(x + Vx2 — 1)
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Proof for sinh~1 x

y =sinh™1x
ey —_ e_y
2

~2x = e¥ —e™Y (multiply with e”)

x =sinhy =

2xeY = e?Y —1

e?y —2xe¥ —1=0

e¥ =x++x2+1

Since e¥ > 0,

e =x+x?>+1

Taking natural logarithms,

y=sinh‘1x=ln(x+ x2 +1)

In the same way, we can find the expression for
tanh™! x in logarithmic form.
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Examples 1.3:

Evaluate

1) sinh™(0.5)

2) cosh™(0.5)

3) tanh™(-0.6)
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