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Finite Element Method (FEM)

Comparison with the finite difference method (FDM)

The finite difference method (FDM) is an alternative way of approximating solutions of PDEs. 

The differences between FEM and FDM are:

• The finite difference method is an approximation to the differential equation; 

the finite element method is an approximation to its solution.

• The most attractive feature of the FEM is its ability to handle complex geometries (and boundaries) with relative ease. 

While FDM in its basic form is restricted to handle rectangular shapes and simple alterations.

• The most attractive feature of finite differences is that it can be very easy to implement.

• The quality of the approximation between grid points is poor in FDM comparing to FEM.• The quality of the approximation between grid points is poor in FDM comparing to FEM.

• The quality of a FEM approximation is often higher than in the corresponding FDM approach, 

but this is extremely problem dependent and several examples to the contrary can be provided.

Generally, FEM is the method of choice in all types of analysis in structural mechanics while computational fluid 

dynamics (CFD) tends to use FDM or other methods (e.g., finite volume method). CFD problems usually require 

discretization of the problem into a large number of cells/gridpoints (millions and more), therefore cost of the solution 

favors simpler, lower order approximation within each cell.
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Finite Element Method – brief history

• In 1943, Richard Courant introduce an interpolation from continuous system into 

triangular segments. (The unveiling of ENIAC at the University of Pennsylvania.)

• In the 1950s, a team from Boeing demonstrated that complex surfaces can be 

analyzed with a matrix of triangular shapes via interpolation.

• Dr. Ray Clough coined the term “finite element” in 1960. In 1960s saw the true 
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beginning of commercial FEA as computers is invented with high computational 

capability.

• In the early 1960s, the MacNeal-Schwendler Corporation (MSC) develop a general 

purpose FEA code. This original code had a limit of 68,000 degrees of  freedom. 

When the NASA contract was completed, MSC continued development of its own 

version called MSC/NASTRAN, while the original NASTRAN become available to 

the public and formed the basis of the FEA packages available today. Around the 

time MSC/NASTRAN was released, ANSYS, MARC, and SAP were introduced.



Finite Element Method – brief history

• In the 1970s, Computer-aided design (CAD) was introduced.

• In the 1980s, the use of FEA and CAD on the same workstation with developing 

geometry standards such as IGES and DXF (type of files). Permitted limited 

geometry transfer between the systems or programs.

• In the 1980s,CAD progressed from a 2D drafting tool to a 3D surfacing tool, and 
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• In the 1980s,CAD progressed from a 2D drafting tool to a 3D surfacing tool, and 

then to a 3D solid modeling system. Design engineers began to seriously consider in 

incorporating FEA into the general product design process.

• In the 1990s, the PC platform has become a major force in high- end analysis. The 

technology has become to accessible that it is actually being “hidden” inside CAD 

packages. (background calculation)



Finite Element Method

Steady-state 1-D heat conduction

Governing equation (heat conduction in plane wall with uniform heat generation)

Heat flow
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Let A =area normal to direction of heat flow,

Q(W/m3) =internal heat generated per unit volume.

Heat rate (heat flux × area) enter the control volume + heat rate generated =

Heat rate leaving control volume.

Adx
dx

dq
qQAdxqA 
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simplify
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kq −=Substitute Fourier’s law 0=+








Q
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dT
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Q is called source when +ve (heat is generated) and is called sink when –ve (heat is consumed)

Here, Q is referred as source.
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dx

bigsmall
kq +=

−
−=

+ve=heat flux same direction

with x-axis

Yeak SH 5



Finite Element Method

Steady-state 1-D heat conduction, Boundary conditions

Specified temperature

T0

(specified)

L

X

TL

h, T∞
wall

Specified heat flux

L

X

TL

h, T∞
wall

q=0
(insulated) •Q

Convection
surface

Wall of tank contain hot liquid at T0, 
airstream of T∞ passed on outside,
maintain TL at boundary.
T|x=0 = T0,   q|x=L = h(TL-T∞).  [note: TL>T∞]

A wall where the inside surface is insulated
And outside is convection surface.
q|x=0 = 0,   q|x=L = h(TL-T∞).

1-D element : two-node element with linear shape functions

1     2      3

1 2

T1=T0
NL

q =h(TL-T∞)

X

element,e

Global node
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Finite Element Method

1-D element

1
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T=N1T1+N2T2

Actual 
temperature

T(ξ)=N1T1+N2T2 = NTe

where N1=(1-ξ)/2, N2=(1+ ξ)/2, ξ varies from -1 to +1, N=[N1, N2], T
e=[T1, T2]
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Finite Element Method
Galerkin’s approach for heat conduction

0=+
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Weighted-Residual Method

y=T=temperature

0
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A global virtual-temperature vector is denoted: ψ=[ψ1, ψ2,…, ψNL]T, or element-wise: ψe=[ψi, ψi+1]
T.

The test function within each element is interpolated as: (global nodes) φ=Nψ, or element-wise φe=Neψe.
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Finite Element Method

Galerkin’s approach for heat conduction

Some matrix concept: (AB)T=BTAT.
Let A,B,C,D=row vector, ABT=scalar → ABT= (ABT)T. 

ABTCDT=(ABT)TCDT=BTTATCDT=B(ATC)DT=scalar

We get,
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Finite Element Method

Galerkin’s approach for heat conduction

Some matrix concept: AMC+ANC=(AM+AN)C=A(M+N)C.
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Finite Element Method

Galerkin’s approach for heat conduction

Finally, we get:
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The global matrices KT and R are assembled from element matrices kT and rQ.

Now, let ΨT=[ψ1, ψ2, …, ψNL]=[0,1,0,…,0], and y1=y0, we get
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Finite Element Method
Galerkin’s approach for heat conduction

Finally, the compact form is given:
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Problem: A composite wall consists of 3 materials. The outer temperature is y0=20ºC. Convection heat transfer

takes place on the inner surface of the wall with y∞=800ºC and h=25 W/m2·ºC. Determine the temperature
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Try insulation at x=L, φ(L)=0

Try Q=2

Solution: we use 3 elements of linear element.

h, y∞ k1

y0=20ºC

k2 k3

0.3m 0.15m 0.15m

k1=20 W/m·ºC
k2=30 W/m·ºC
k3=50 W/m·ºC
h =25 W/m2·ºC
y∞=800ºC

h, y∞

1

1 2y1 3y2 y3 y4=20ºC

2 3 4 (x4=L)

3 elements of linear FE

B.C.: y4 = y0=20,   q|x=0 = –h(y1-y∞). [y∞>y1] We get
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Finite Element Method

Galerkin’s approach for heat conduction
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Reason choosing

ΨT=[0,1,0,…], 

This system equivalent to

setting ΨT=[1,0] & ΨT=[0,1]  



Finite Element Method
Galerkin’s approach for heat conduction

Finally, we get ( )
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The element conductivity matrices are

The global KT=Σ kT is obtained
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1   2 2   3 3   4

The whole Thomas algorithm can be summarized :

1. α1=d1

2. αi=di-ciβi-1, i=2,3,…,n

3. βi=ei/αi, i=1,2,…,n-1.

4. w1=b1/α1

5. wi=(bi-ciwi-1)/αi, i=2,3,…,n.

6. xn=wn

7. xi=wi-βixi+1, i=n-1, n-2,…,1.

Since no heat generation Q occurs in this problem, we get rQ=[0 0]T, R=[0 0 0]T.

Given y0=20ºC, y∞=800ºC and h=25 W/m2·ºC, 

eq. (a) becomes

This linear system can be solved using Thomas algorithm and we get [y1, y2, y3]=[304.6, 119.0, 57.1] ºC
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Finite Element Method

Galerkin’s approach for heat conduction

Preprocessing

Preprocessing of the problem includes one or more of the following tasks:

• Read geometry and material data (E), and boundary and

initial conditions of the problem.

• Mesh generation.

• Generation of node numbers.

• Generation of coordinates and connectivity.

element 1 2 3 ← local

1 7 8 4

↑

Global

2 8 5 4

3 8 9 5

4 9 6 5

5 4 5 1

N1 N2 N3

6 8

↓6 5 2 1

7 5 6 2

8 6 3 2

Processing of FEM

Processing of the FEM includes one or more of the following tasks:

• Calculate element matrices.

• Assemble element equations.

• Solve the system of equations.

Linear triangular

element

N7 N8 N9

N4 N5 N6

6 8

5 7

2 4

1 3

Yeak SH 15



Finite Element Method

Galerkin’s approach for heat conduction

Postprocessing

Postprocessing of the FEM includes one or more of the following tasks:

• Computation of the primary and secondary variables at points of interest; primary variables

are known at nodal points.

• Interpretation of the results to check whether the solution makes sense (based on physical 

Process and experience when other solutions are not available.

• Tabular and/or graphical presentation of the results. Contour plotting uses

y(ξ)=N y +N y = Nye

Interpolation of temperature within each element is given
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2

1

12

−−
−

= xx
xx

ξ

Contour plot for stress
-10

10

y(ξ)=N1y1+N2y2 = Nye

where N1=(1-ξ)/2, N2=(1+ ξ)/2, ξ varies from -1 to +1, N=[N1, N2], y
e=[y1, y2]

T.

The derivative of the solution is obtained by differentiation

Use chain rule, .]1,1[
12

12

e

T

e

e

e

ld

d

xxdx

d

d

dy

dx

dy
yByy

N
=−=⋅

−
=⋅=

ξ
ξ

ξ

For element 1, we get [ ] 67.618
0.119

6.304
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1
]1,1[
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e
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For element 2, we get [ ] 67.412
1.57

0.119
11

15.0

1
]1,1[

1 22
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=
e

e

e
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Note that the derivative above is discontinuous, for any order element, at the nodes connecting the different 

elements because the continuity of the derivative of FE solution at the connecting nodes is not imposed. Yeak SH 16

Contour plot for T(x,y)
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