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Nonlinear equation - Rootfinding
Newton's Method for Approximating Roots

Given: xi  an initial guess of the root of f (x)=0
Assumption : x1 better than x0, x2 better than x1, etc.
Taylor Theorem : f (x+h)  f (x) + h f (x)
Find h such that f (x+h)=0.Find h such that f (x+h)=0.
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Newton's Method for Approximating Roots
• Given f (x) we seek a root of f (x)=0.
• If xn is an approximation for the root

Then we claim that xn+1

is a better approximation
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Assumptions:f(x) is continuous and the first derivative is knownAn initial guess x0 such that f’(x0)≠0 is given

Answer: 
0.7548776667
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Advantages
• Converges fast (quadratic convergence), if it converges.  
• Requires only one guess

Drawbacks
1. Divergence at inflection points

Selection of the initial guess or an iteration value of the root that is 
close to the inflection point of the function may start diverging away 
from the root in using Newton-Raphson method.
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A plot of f x = xK 1 3
C 0.5.

For example, to find the root of the equation                                   
The Newton-Raphson method reduces to                                       .

The root starts to diverge at certain Iteration because the previous 
estimate of 0.9 is close to the inflection point of x=1. 

Eventually after many iterations the root converges to the exact value of 
x=0.206 
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Drawbacks – Oscillations near local maximum and minimum
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6 f(x)

 3Iteration 
Number

Table A Oscillations near local maxima and 
mimima in Newton-Raphson method.
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seek a root of f (x)=0
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Figure A  Oscillations around local   
minima for f (x)=x2+2              
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0.5
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–0.17166
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2.6955
0.97678
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2.092
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2.029
34.942
9.266
2.954
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Application of Newton method
Finding a square-root

• Example: 2 = 1.4142135623730950488016887242097
• Let x0 be one and apply Newton’s method.

( ) 2f x x  Note the rapid convergence

Square root of a
equivalent to find root of
f(x) = x2a=0
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Note the rapid convergence
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Convergence Notation
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        :eConvergenc Quadratic

             :eConvergencLinear 
Let x1, x2, …, converge to x (x2 better than x1, x3 better than x2 and so on), then

Cxx
xxP p

n
n 

1       :order  of eConvergenc

• A method with convergence order q converges faster than a 
method with convergence order p if q>p.

• Quadratic convergence is faster than linear convergence.
• Methods of convergence order p>1 are said to have super 

linear convergence.

where C is a constant independent of x.
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Fixed Point Iteration Scheme
Theorem. Let g be a continuous function on closed interval [a,b] with >1 continuous
derivatives on open interval (a,b). Let p(a,b) be a fixed point of g.
If g(p)=g(p)==g(-1)(p)=0,
But g()(p)0, then there exists a  >0 such that for any p0[p- ,p+ ], the sequence
pn=g(pn-1) converges to fixed point p of order  with asymptotic error constant
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Order of Convergence for Fixed Point Iteration Scheme

Let,   xn=r n,  xn+1=r n+1, Where r=G(r)

xn+1=G(xn)   rn+1=G(rn) Using Taylor series,
we get          

   !2!2
22

1
rGrGrrGrGrGr nnnnn 

The leading term in Taylor series gives n+1 G(r) n
So, the fixed-point iteration is a first order scheme, provided G(r)0

1 G(r) 0 n [G(r)]n0

The scheme converges if |G(r)|<1, diverges if |G(r)|>1
The error decreases monotonically if   0G(r)<1, 
The error decreases oscillatory  if  1G(r)<0.

e.g.  xex=0
xn+1 =exn Or xn+1 = ln(xn)

x22x 3=0, roots are 1, 3. 321  nn xx 2
3

1 
n

n xx
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Newton’s method for nonlinear systems
The system of equations gi(y1,y2,,yn)=0 (1≤i≤n)
can be expressed simply as G(Y)=0
by letting Y=(y1,y2,,yn)T and G=(g1,g2,,gn)T. Using the Taylor’s series expansion, 
we get

0=G(Y+H)  G(Y)+G(Y)H ,  (where Y+H is more accurate solution)
where H=(h1,h2,,hn)T and G(Y) is the n×n Jacobian matrix J(Y):
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The correction vector H is obtained by solving linear system
J(Y)H= -G(Y)

If Jacobian matrix is tridiagonal matrix, then H can be solved using Thomas 
algorithm. If the matrix size is 2×2, then just use the inverse of matrix J, H=J-1(-G). 
Finally, Newton’s iteration for n nonlinear equations in n variables is given by

Y(k+1)=Y(k)+H(k)    Y(k+1)=Y(k)J-1G
where the Jacobian system is

J(Y(k))H(k)= -G(Y(k)).

  nnnn ygygyg 
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Preliminaries – Taylor’s series and derivative w.r.t. vectors
Taylor’s series

y (scalar or a vector) y/x
32 hh  ,)( XtFtX dtd
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x is column vector
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Newton’s method for nonlinear systems
Example
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Exact solution:
[x = 1.233317793, y = .2122450145],
[x = -.1781281996, y = .2901421450], 
[x = -.4551895934, y = -.1623871594].
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x.xyF Try initial guess:
x= 0.5, 0.5
x=0.5,  0.5

Y(k+1)=Y(k)+H(k)    Y(k+1)=Y(k)J-1G
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Newton’s method for nonlinear systems
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Exact solution:
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Y(k+1)=Y(k)+H(k)    Y(k+1)=Y(k)J-1F(k)
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Types of minima
f(x)

strong
local

minimum

weak
local

minimum strong
global

minimum

strong
local

minimum

• Global minimum/maximum is the minimum/maximum value in the 
feasible region.

• Local minimum/maximum is the minimum/maximum value in the 
local region only.

Yeak SH 13
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First-order optimality condition
Minimize  f (x)

• For function of one variable, we can find extremum by
differentiating function and setting derivative to zero
• For function of n variables, we need to find critical point, i.e.
solution of nonlinear systemf (x) = 0  

Yeak SH 14

where f (x) is gradient vector of f, whose ith component is  f(x) /xi• For continuously differentiable f: S  Rn  R, any interior point x* 
of S at which f has local minimum must be critical point of f

• Not all critical points are minima: they can be maxima or saddle 
point.



Second-order optimality condition
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Minimize f (x)• For twice continuously differentiable f: S  Rn
 R, we can distinguish among the critical 
points by using Hessian matrix Hf(x) defined 
by

which is symmetric
    

jiijf xx
xfxH 
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A is positive definite if
xTAx>0, for all x (all eigenvalue>0)
A is negative definite if
xTAx<0, for all x (all eigenvalue<0)

A Hermitian matrix which is neither positive definite, negative definite, 
positive-semidefinite, nor negative-semidefinite is called indefinite. 
(having both positive and negative eigenvalues). Yeak SH 15

which is symmetric
• At critical point x*, if Hf(x*) is

• Positive definite, then x* is minimum of f
• Negative definite, then x* is maximum of f
• Indefinite, then x* is saddle point of f
• Singular, then various behaviour are 

possible



Steepest descent 
• Basic principle is to minimize the N-dimensional function by a series of 1D line-minimizations:

• The steepest descent method chooses pk to be parallel to the gradient
Try with 

• Step-size αk is chosen to minimize f(xk + αkpk).For quadratic forms there is a closed form solution:
Try with 
f=x2+y2

 xf

  xbxxx TT Hf  2
1
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Steepest descent 
Try with 
f=x2+y2

 xf
Let xk=[1 0]T,  f=2xi+2yj, zk= f/|f|,
Minimize f(xk+zk)

Let 0=0, 1=0.2, 2=0.4, we get 
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 fi 1 0.64 0.36
We perform interpolation using Ms Excel

y = 1x2 - 2x + 1
0

0.2
0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.4 0.5

fi

fi
Poly. (fi)

So, f(xk) is minimum when  is 1

Yeak SH 17



Steepest descent method

Try with 
f=x2+y2

• Let f: Rn  R, be a  real-valued function of n real 
variable

• At any point x where gradient vector is 
nonzero, negative gradient, f (x), points 
downhill toward lower values of f

• In fact, f (x) is locally direction of steepest 
descent: f decreases more rapidly along direction 

Yeak SH 18

descent: f decreases more rapidly along direction 
of negative gradient than along any other

• Steepest descent method: starting from initial 
guess x0, we approximate solution given by
xk+1 = xk αkf (xk)

where αk is line search parameter that determines 
how far to go in given direction.



Steepest Descent

)(min xfx

Our objective is• Steepest descent algorithm:
• Initial guess: x0  Rn

Step A:set i = 0
Step B: if f (xi)=0 then stop, 

Yeak SH 19

else, compute search direction
hi= f (xi) 

Step C: compute the step size αk

Step D: set xi+1 = xi+αihi , and go to step B.

 iii hxf    0minarg



Steepest Descent

f1(x1, x2, , xn) = 0,
f2(x1, x2, , xn) = 0,

steepest descent method to find the minimum 
can be applied to solve a system of nonlinear 
equations x = (x1, x2, , xn)

y

0

1

2
a minimum
point


fn(x1, x2, , xn) = 0.

      n
i nin xxfxxg 1

2
11 ,,,, 

0)(min xx gWhere, we get

g = ff T

where f = [f1 f2  fn] and f T is the transpose of f
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Steepest Descent
1. Evaluate g at an initial approximation x(0).
2. Determine a direction from x(0) using the 
gradient of g.
3. Move to a new appropriate position x(1) so 
that g(x(1)) < g(x(0)).
4. Repeat steps 2-4 with x(0) replaced by x(1). g

The direction of greatest decrease in the value of g at x is 
the direction given by  g(x), therefore x(1) is given by

x(1) = x(0)  g(x)
where  will be determined

Yeak SH 21



x(0)g1

g3
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Steepest Descent
The procedure is to fit a quadratic to three points 
(1, g1), (2, g2), and (3, g3) then choose  so that 
g is a minimum in the direction of steepest descent. 
The steps are 

a) Let 1 = 0 at x(0), therefore g1 = g(x(0)). 
b) Let 3 = 1 and evaluate g3 = g(x(0)  3z)
c) If g3 > g1, let 3 = 3/2 and repeat step (b)
d) Let  =  /2 and evaluate g = g(x(0)   z)

minimum



g

032α10

g1
g2 g3 g0

d) Let 2 = 3/2 and evaluate g2 = g(x(0)  2z)
The quadratic through three points 
(1, g1), (2, g2), and (3, g3) has the formP() = g1 + h1 + h3(  2)=g1 + g11 + g21 (  2)
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e) Evaluate g0 = g(x(0)  0z)

Steepest Descent

f) If g0 < g3 then  = 0 else  = 3

a) Let 1 = 0 at x(0), therefore g1 = g(x(0)). 
b) Let 3 = 1 and evaluate g3 = g(x(0)  3z)
c) If g3 > g1, let 3 = 3/2 and repeat step (b)
d) Let 2 = 3/2 and evaluate g2 = g(x(0)  2z)

Since a quadratic through three points can have a 
minimum or a maximum as shown in Fig below, 
is chosen so that g is the lowest value between g0and g3 as follows

4. Repeat steps 2-4 with x(0) replaced by x(1).
1. Evaluate g at an initial approximation x(0).
2. Determine a direction from x(0) using the 

gradient of g.
3. Move to a new appropriate position x(1) so 

that g(x(1)) < g(x(0)).
4. Repeat steps 2-4 with x(0) replaced by x(1).

         2
0

00
0

1
x

xxz g
ggz 
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Steepest Descent
Newton’s forward divided-difference interpolation
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Given (x0,y0), (x1,y1) and (x2,y2), fit a quadratic interpolant through the data
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Steepest Descent
Use the method of steepest descent with the initial guess x = [0 0 0] to obtain the solutions 
to the following equations

f1(x1, x2, x3) = 3x1  cos(x2 x3)  ½ = 0
f2(x1, x2, x3) = x12  81(x2 + 0.1)2 + sin x3 + 1.06 = 0
f3(x1, x2, x3) = ex1x2 + 20x3 +(10 3)/3 = 0

x(0) = [0 0 0];  f = [f1 f2 f3]g = ff T = f12 + f22 + f32 = 111.975

Exact, x=(0.5,0,0.5235988)T

Example
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Steepest Descent
f1(x1, x2, x3) = 3x1  cos(x2 x3)  ½ = 0
f2(x1, x2, x3) = x12  81(x2 + 0.1)2 + sin x3 + 1.06 = 0
f3(x1, x2, x3) = ex1x2 + 20x3 +(10 3)/3 = 0
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Exact, x=(0.5,0,0.5235988)T
minimum
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g2 g3 g0

x(0) = [0 0 0]; 
g(x(0))  = f12 + f22 + f32 = 111.975    554.4192

0
0  xgz

Let     Tgz 999583.0,0193062.0,0214514.01 0
0

 xz
With 1=0,     975.1110(

1
0(

1  xzx ggg  Now, let 3=1,  5649.933
0(

3  zx gg Since, g3<g1, we accept 3, set 2= 3/2=0.5   53557.22
0(

2  zx gg
Find quadratic polynomial that interpolate data (0,111.975), (0.5, 2.53557) &(1,93.5649). We use
Newton’s forward divided-difference interpolation
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P() = g1 + h1 + h3(  2)=g1 + g11 + g21 (  2) Yeak SH 26



Steepest Descent

interpolate data (0,111.975), (0.5, 2.53557) & (1,93.5649).

937.400,059.182,5649.93,1

,878.218,53557.2,5.0
,975.111,0

1223
12
12122

11












hhhgghg

gghg
g

x =[ 0.011218   0.010096  -0.522741 ], g =  2.327617
x =[ 0.137860  -0.205453  -0.522059 ], g =  1.274058
x =[ 0.266959   0.005511  -0.558494 ], g =  1.068131
x =[ 0.272734  -0.008118  -0.522006 ], g =  0.468309
x =[ 0.308689  -0.020403  -0.533112 ], g =  0.381087
x =[ 0.314308  -0.014705  -0.520923 ], g =  0.318837
x =[ 0.324267  -0.008525  -0.528431 ], g =  0.287024
x =[ 0.330809  -0.009678  -0.520662 ], g =  0.261579
x =[ 0.339809  -0.008592  -0.528080 ], g =  0.238486
x =[ 0.345746  -0.009034  -0.520941 ], g =  0.217440

P() = g1 + h1 + h3(  2)=g1 + g11 + g21 (  2)

937.400,059.182,5649.93,1
13
123

23
23

233   hhg

P() = g1 + h1 + h3(  2)=111.975 218.878 + 400.937(  0.5)
We have P()=0 when  =0=0.522959. Since g0=g(x(0)0z)=2.32762 is smaller than g1 and g3, we set 

x(1)=x(0)0z=x(0)0.522959z=(0.0112182,0.0100964,0.522741)T We get,  g(x(1))=2.32762
Exact, x=(0.5,0,0.5235988)T
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