

OPENCOURSEWARE

HIGHWAY ENGINEERING SAB2832

STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT

CHE ROS ISMAIL (FKA, UTM)

Inspiring Creative and Innovative Minds

ocw.utm.my

STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT BY CHE ROS ISMAIL (FKA, UTM)

STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT

- 1. Introduction
- 2. Elements of a Flexible Pavement Structure
- 3. Factors to be Considered in the Design
- 4. Methods of Design for New Pavements
- 5. Malaysian Design Methods

OPENCOURSEWARE

INTRODUCTION

Aim: to design a structure that will ensure that the transmitted stresses are sufficiently reduced and do not exceed the capacity of the underlying subgrade

SAB2832-cri2007ev1

ocw.utm.my

FLEXIBLE PAVEMENT STRUCTURE

<u>Elements</u> of a flexible pavement:

- Sub-grade upper layer of natural soil or fill, support <u>load</u> transmitted from overlaying layers.
- 2. Sub-base specified material, secondary load spreading layer, prevent infiltration of sub-grade into pavement, construction platform for construction traffic, drainage layer
- Road base specified material, main load spreading layer, provide pavement with added stiffness and resistance to fatigue
- 4. Surfacing uppermost layer, provide safe & comfortable riding surface, withstand traffic stresses, protect lower layers, impermeable and flexible, may consist of BC and WC, premix layer.

LOAD DISTRIBUTION

FACTORS TO BE CONSIDERED IN THE DESIGN

- Failure mechanism permanent deformation and cracking <u>rut</u> (accumulation of permanent strain – water ponding) crack (fracture failure under repeated or fluctuating stress – fatigue failure in the bituminous layer)
- 2. Traffic loading pavement design must account for cumulative traffic loading during design life
 - a. Tire loads & pressure contact load and area
 - b. Axle & wheel configuration no of contact points
 - c. Load repetition cumulative
 - d. Traffic distribution lane, direction
 - e. Speed loading period (slow, climbing)

PRESENT SERVICEABILITY INDEX

SAB2832-cri2007ev1

RUT

FACTORS TO BE CONSIDERED IN THE DESIGN

f. ESA – convert wheel loads to standard loads std load = 80 kN, 8160 kg, or 18000 lb load equivalency factor, e = (L/Ls)ⁿ consider only commercial vehicles CV (<u>BTM > 1.5 ton</u>, 3 ton for RN31)

3. Environmental – temperature (asfalt – brittle/soft) and moisture (safety of users and pavement)

COMMERCIAL VEHICLE

SABZ83Z-CHZUU7EVI

COMMERCIAL VEHICLE

AB2832-cri2007ev1

METHODS OF DESIGN FOR NEW PAVEMENTS

Objective – to determine the number, material composition, and thickness of different layers that will be suitable in a specific environment and able to sustain the anticipated traffic loading Three methods:

1. Precedent – rule-of-thumb, std thickness for particular road classification

- 2. Empirical soil classification or strength using experience, experimentation, or both
- Theoretical/semi mechanistic, based on mechanical model, relate pavement parameters (stress, strains, deflections) to physical causes (loads, material properties) using mathematical model

METHODS OF DESIGN FOR NEW PAVEMENTS

Advantages of mechanistic-empirical:

- a. Can be use for new construction and rehabilitation
- b. Accomodate various load types
- More reliable performance prediction (use material properties)
- d. Accomodate environmental and aging effects on materials

Steps in <u>design process</u>

DESIGN PROCESS

MALAYSIAN DESIGN METHODS

Adopt design method based on AASHTO Guide, and catalogue of structure method

- Arahan Teknik Jalan 5/85 based on AASHO road test, developed using multi-layered elastic theory. Suitable for major roads with heavy and medium traffic
- Overseas Road Note 31 based on research in tropical and sub-tropical countries. Design to cater traffic up to 30MSA in one direction

PAVEMENT THICKNESS DESIGN ATJ 5/85

Data required:

- 1. Design period, n suggests 10 years
- 2. Class of roads
- 3. Initial Average Daily Traffic ADT
- 4. Percentage of Commercial Vehicle Pc
- 5. Average annual traffic growth r
- 6. Sub-grade strength CBR
- 7. Terrain condition

PAVEMENT THICKNESS DESIGN ATJ 5/85

Design Procedure:

- 1. Calculate Vo = ADT x (1/2) x 365 x (Pc/100)
- 2. Calculate Vc= Vo $[(1 + r)^n 1] / r$
- 3. Calculate cumulative ESA, ESA = Vc x e (<u>Table 3.1</u> or e = 2.52)
- 4. Check daily capacity (Table <u>3.2</u>, <u>3.3</u>, <u>3.4</u>)
- 5. Determine sub-grade CBR
- 6. Obtain equivalent thickness, TA' from <u>nomograph</u>
- 7. Calculate thickness for each layer (Table <u>3.5</u>, <u>3.6</u>, <u>3.7</u>)

 $TA' = S_N = a_1D_1 + a_2D_2 + ... + a_nD_n$

8. <u>Sketch</u> the designed thickness

EQUIVALENCE FACTOR

Percentage of selected heavy goods vehicles	0	15 %	16 - 50 %	51 - 100 %
Type of road	Local	Trunk		
Equivalence factor, e	1.2	2.0	3.0	3.7

SAB2832-cri2007ev1

MAXIMUM HOURLY CAPACITY

Road type	Passenger vehicle unit per hour
Multilane	2000 per lane
2 lane (both ways)	2000 total for both ways
3 lane (both ways)	4000 total for both ways

REDUCTION FACTOR

Carriageway	Shoulder width (m)							
width (m)	2.00	1,50	1,25	1.00 0.90				
7.5	1.00	0.97	0,94					
7.0	0.88	0.86	0.83	0.79				
6.0	0.81	0,78	0.76	0.73				
5.0	0.72	0,70	0.67	0.64				

SAB2832-cri2007ev1

TERRAIN FACTOR

LAYER COEFFICIENT

Component	Type of Layer	Property	Coefficients
Wearing and Binder Course	Asphaltic Concrete		1.00
	Dense Bituminous Macadam	Type 1: Stability > 400 kg	0.80
104X M2R :		Type 2: Stability > 300 kg	0.55
Road Base	Cement stabilized	Unconfined Compressive strength (7 days) 30 - 40 kg/cm ²	0.45
	Mechanically stabilized crushed aggregate	CBR <u>≥</u> 80 %	0.32
	Sand, laterite, etc.	CBR <u>></u> 20 %	0.23
Sub-base	Crushed aggregate	CBR <u>></u> 30 %	0.25
	Cement stabilized	CBR <u>></u> 60 %	0.28

SAB2832-cri2007ev1

STANDARD AND CONSTRUCTION THICKNESS

Type of Layer		Standard Thickness (cm)	One Layer Lift (cm)
Wearing Course		4 - 5	4 - 5
Binder Course		5 - 10	5 - 10
Road Base	Bituminous	5 - 20	5 - 15
	Wet Mix	10 - 20	10 - 15
	Cement Stabilized	10 - 20	10 - 20
Sub-base	Granular	10 - 30	10 - 20
	Cement Stabilized	15 - 20	10 - 20

MINIMUM THICKNESS OF BITUMINOUS LAYER

Nomograph

ocw.utm.my

PAVEMENT THICKNESS DESIGN ATJ 5/85

In case of varying CBR for 1m depth of sub-grade, mean CBR is determined as follows:

$$CBR_{m} = [(h_{1}CBR_{1}^{1/3} + h_{2}CBR_{2}^{1/3} + ... + h_{n}CBR_{n}^{1/3}) / (1000)]^{3}$$

where:

$$\begin{array}{ll} \mathsf{CBR}_m &= \mathsf{mean} \ \mathsf{CBR} \ \mathsf{for} \ \mathsf{that} \ \mathsf{location} \\ \mathsf{CBR}_1, \ \mathsf{CBR}_2, \ \ldots \ \mathsf{CBR}_n &= \mathsf{CBR} \ \mathsf{of} \ \mathsf{soil} \ \mathsf{strata} \\ \mathsf{h}_1, \ \mathsf{h}_2, \ \ldots \ \mathsf{h}_n &= \mathsf{thickness} \ \mathsf{of} \ \mathsf{soil} \ \mathsf{strata} \ (\mathsf{mm}) \\ \mathsf{h}_1 + \mathsf{h}_2 + \ \ldots + \mathsf{h}_n &= \mathsf{1000} \ \mathsf{mm} \end{array}$$

PAVEMENT THICKNESS DESIGN ATJ 5/85

Design Example:

JKR 05, carriageway width = 7.5m, shoulder = 2.0m

ADT = 6600

- Pc = 15 %
- r = 7 %

Sub-grade CBR = 5 %

Rolling Terrain

Material:

Surfacing = AC Road base = wet mix Macadam Sub-base = sand

PAVEMENT THICKNESS DESIGN ROAD NOTE 31

- Designed for tropical and sub-tropical countries to carry up to 30M CSA
- Heavy vehicle > 3 ton
- Equivalence: $e = (L/Ls)^{4.5}$

Design procedure:

- 1. Estimate CSA for design life >>> T (<u>Table 3.8</u>)
- 2. Assess sub-grade strength >>> S (<u>Table 3.9</u>, <u>3.10</u>)
- 3. Select combination of <u>material</u> and thickness from structure <u>catalogues</u> based on T and S

PAVEMENT THICKNESS DESIGN ROAD NOTE 31

Emphasis on 5 aspects:

- 1. Influence of tropical climate on moisture conditions in road sub-grades
- 2. Severe conditions imposed on exposed bituminous surfacing by tropical climates
- 3. Interrelationship between design and maintenance
- 4. High axle load and tyre pressures
- 5. Influence of tropical climate on the nature of the soils and rocks used in the road building

TRAFFIC CLASSES

Range (10 ⁶ ESA)
< 0,3
0.3 - 0.7
0.7 - 1.5
1.5 - 3.0
3.0 - 6.0
6.0 - 10
10 - 17
17 - 30

SUB-GRADE CLASSES

ESTIMATION OF SUB-GRADE CLASSES

Depth of water	Subgrade strength class								
table from formation (m)	Non-plastic sand	Sandy clay PI = 10	Sandy clay PI = 20	Silty clay PI = 30	Heavy clay PI > 40				
0,5	S4	S4	S2	S2	S1				
1	S5	S4	S3	S2	S1				
2	S 5	S5	S4	S3	S2				
3	S6	S5	S4	S3	S2				

SAB2832-cri2007ev1

MATERIAL DEFINITION

Double surface dressing, SD
Flexible bituminous surfacing
Bituminous surface (Wearing and binder course)
Road base, RB
Granular road base, GB1 - GB3
Granular sub-base, GS
Granular capping layer or selected subgrade fill, GC
Cement or lime stabilized road base 1, CB1
Cement or lime stabilized road base 2, CB2
Cement or lime stabilized sub-base, CS

GRANULAR BASE, SURFACE DRESSING

	T1	T2	T3	T4	T5	T6	T7	T8
C1	SD	 SD	 SD	 SD	SD	 SD		
51	150 175	150 225	200	200	200	225 325		
	300	300	300	300	300	300		
92	 SD	 SD	 SD	 SD	 SD	 SD		
1.52	150	200	175	200	200	300		
	200	200	200	200	200	200		
S3	 SD	 SD	 SD	 SD	 SD	 SD		
	200	250	200	200	325	225 350		
S4	SD 150	SD 150	SD 200	SD 200	SD 200	SD 225		
	125	175	150	200	250	275		
S5	SD 150	SD 150	SD 175	SD 200	SD 225	SD 250		
	100	100	100	125	150	175		
S6	SD 150	SD 150	SD 175	SD 200	SD 225	SD 250		

SADZOSZ-CHZUU/EVI

GRANULAR BASE, STRUCTURED SURFACE

	T1	T2	T3	T4	T5	T6	T7	T8
						100	125	150
S1						200	225	250
						225	225	250
						350	350	350
						100	125	150
S2						200	225	250
						225	225	250
						200	200	200
S3						100	125	150
						200	225	250
						250	250	275
S4						100	125	150
						200	225	250
						175	175	175
S5						100	125	150
						200	225	250
						100	100	100
S6						100	125	150
						200	225	250

PAVEMENT THICKNESS DESIGN ROAD NOTE 31

Design Example 1: ADT = 250/day.dir, Pc = 55 %, r = 5 %, CBR = 7 %

Design Example 2: CSA = 12M, PI > 45, WT = 3m below formation

• Thank You

