
Stack Application

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

SCJ2013 Data Structure & Algorithms

Stack Application Examples

• Check whether parantheses are balanced
(open and closed parantheses are properly
paired)

• Evaluate Algebraic expressions.

• Creating simple Calculator

• Backtracking (example. Find the way out
when lost in a place)

2

Example1: Parantheses Balance

• Stack can be used to recognize a balanced
parentheses.

• Examples of balanced parentheses.

 (a+b), (a/b+c), a/((b-c)*d)

 Open and closed parentheses are properly paired.

• Examples of not balance parentheses.

 ((a+b)*2 and m*(n+(k/2)))

 Open and closed parentheses are not properly
paired.

3

Check for Balanced Parantheses
Algorithm

create (stack);

continue = true;

while (not end of input string) && continue

{ ch = getch();

 if ch = „(‟ || ch = „)‟

 { if ch = „(‟

 Push(stack, „(‟);

 else if IsEmpty(stack)

 continue = false;

 else

 Pop(s);

 } // end if

} // end while

if (end of input && isEmpty(stack);

 cout << “Balanced..” << end1;

else

 cout << “Not Balanced.. ” << endl;

4

Check for Balanced Parantheses
Algorithm

• Every ‘(’ read from a string will be pushed into stack.

• The open parentheses ‘(’ will be popped from a stack whenever the
closed parentheses ‘)’ is read from string.

• An expression have balanced parentheses if :

– Each time a “)” is encountered it matches a previously encountered
“(“.

– When reaching the end of the string, every “(“ is matched and stack
is finally empty.

• An expression does NOT have balanced parentheses if :

– When there is still ‘)’ in input string, the stack is already empty.

– When end of string is reached, there is still ‘(‘ in stack.

5

Example for Balance Parantheses

6

3

2

1

0 (

Every (is Insert into stack

3

2

1 (

0 (

3

2

1

0

3

2

1

0 (

Pop (when found)

Push(() Push(() Pop() Pop()

Expression a(b(c)) have balance parentheses since when end of

string is found the stack is empty.

Example for ImBalanced Parantheses

7

3

2

1

0 (

Every (is Insert into stack

3

2

1 (

0 (

3

2

1

0

3

2

1

0

3

2

1

0 (

Pop (when found)

Push(() Push(() Pop() Pop() Pop()->fail

Expression a(b(c))) f does not have balance parentheses => the

third) encountered does not has its match, the stack is empty.

Algebraic expression

• One of the compiler’s task is to evaluate algebraic
expression.

• Example of assignment statement:

y = x + z * (w / x + z * (7 + 6))

• Compiler must determine whether the right
expression is a syntactically legal algebraic
expression before evaluation can be done on the
expression.

• 3 algebraic expressions are :

 Infix, prefix and postfix
8

Infix Expression

• The algebraic expression commonly used is infix.

• The term infix indicates that every binary operators appears
between its operands.

• Example 1:

• Example 2: A + B * C

• To evaluate infix expression,

 the following rules were applied:
1. Precedence rules.

2. Association rules (associate from left to right)

3. Parentheses rules.

9

Prefix and Postfix Expressions

• Alternatives to infix expression

• Prefix : Operator appears before its operand.

• Example:

• Postfix : Operator appears after its operand.

• Example:

10

Infix, prefix and postfix

11

The advantage of using prefix and postfix is that we don’t need

to use precedence rules, associative rules and parentheses

when evaluating an expression.

Converting Infix to Prefix

Steps to convert infix expression to prefix:

STEP 1 : Determine the precedence.

STEP 2

12

Converting Infix to Prefix

Another Example:

13

Converting Infix to Postfix

Steps to convert infix expression to postfix:

STEP 1

STEP 2

 14

Converting Infix to Postfix

15

Evaluating Postfix Expression

• Postfix expression can be evaluated easily using
stack.

• Stack operations, such as push(), pop() and isEmpty()
will be used to solve this problem.

• Steps to evaluate postfix expression :

1. Convert infix to postfix expression.

2. Evaluate postfix using stack.

16

Converting Infix to Postfix Algorithm

17

create(s);

while (not end of infix input)

{ ch = getch(); // next input character

 if (ch is operand) add ch to postfix notation;

 if (ch = „(„) push(ch)

 if (ch = „)„)

 { chpop = pop();

 while (chpop != „(„)

 { add chpop to postfix notation;

 chpop = pop();

 }

 }

 if (ch is operator)

 { while (!isEmpty() &&

(precedence(stacktop()) >= precedence(ch)))

 { chpop = pop();

 add chpop to postfix notation;

 }

 push(ch);

 }

}

while (!isEmpty())

{ ch = pop();

 add ch to postfix notation;

}

Converting Infix to Postfix
 A + B * C – D / E

18

stack infix postfix

Converting Infix to Postfix :
A * B – (C + D)+ E

19

infix stack postfix

Steps to Evaluate Postfix Expression

1. If char read from postfix expression is an operand, push operand to
stack.

2. If char read from postfix expression is an operator, pop the first 2
operand in stack and implement the expression using the following
operations:

– pop(opr1) dan pop(opr2)

– result = opr2 operator opr1

3. Push the result of the evaluation to stack.

4. Repeat steps 1 to steps 3 until end of postfix expression

• Finally, At the end of the operation, only one value left in the stack. The
value is the result of postfix evaluation.

20

Evaluating Postfix Expression

21

Create Stack

while (not end of postfix notation)

{ ch = getch()

if (ch is operand)

 push (ch)

 else

 { operan1 = pop()

 operan2 = pop()

 result = operan2 ch operan1

 push(result)

 }

}

result = pop()

Evaluating Postfix Expression :
2 4 6 + *

22

postfix result stack

Evaluating Postfix Expression :
2 7 * 18 - 6 +

23

postfix result stack

2 2

Conclusion

• Stack is a simple structure but it is very

powerful.

• Stacks can be used to decide whether a

sequence of parantheses is well balanced.

• Stack also can be used to evaluate

algebraic expression.

