
Searching Techniques:
Binary Search

SCJ2013 Data Structure & Algorithms

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

Objectives
 At the end of the class, students are expected to be able

to do the following:

• Understand the searching technique concept and the

purpose of searching operation.
• Understand the implementation of basic searching

algorithm;
1. Sequential search.

• Sequential search on unsorted data.
• Sequential search on sorted data.

2. Binary Search.
• Able to analyze the efficiency of the searching

technique.
• Able to implement searching technique in problem

solving.

3.0 Binary Search

Binary Search

• The drawback of sequential search
algorithm is having to traverse the entire
list, O(n)

• Sorting the list does minimize the cost of
traversing the whole data set, but we
can improve the searching efficiency by
using the Binary Search algorithm

4

Binary Search
• Consider a list in ascending sorted order.

For a sequential search, searching is from
the beginning until an item is found or
the end is reached.

• Binary search improve the algorithm by
removing as much of the data set as
possible so that the item is found more
quickly.

• Search process is started at the middle
of the list, then the algorithm determine
which half the item is in (because the list
is sorted).
– It divides the working range in half with a

single test. By repeating the procedure, the
result is an efficient search algorithm-O(log2
n).

5

• starts by comparing the search key

with the element at the middle

– If the value matches, it will be return to the
calling function (index = MIDDLE)

– If the search key < the middle element,

search will be focused on the elements

between the first element to the element
before the middle element (MIDDLE -1)

– If the search key is not found, the element

at the middle of the first element and the
MIDDLE –1 element will be compared

with the search key.

– If the search key > the middle element,

search will only be focused on the
elements between the second MIDDLE

element to the first MIDDLE element.

– Search is repeated until the searched key is

found or the last element in the subset is
traversed (LEFT>RIGHT).

6

Binary Search

array

5522 443311

[0] [1] [2] [3] [4] [5] [6]

7766

5522 443311

[0] [1] [2] [3] [4] [5] [6]

7766

MIDDLE

[0] [1] [2]

22 3311

MIDDLE

[2]

33

MIDDLE

LEFT>RIGHT

35 search_key

Binary Search Function

7

int binary_search(int search_key, int array_size,

 const int array [])

{ bool found = false;

 int index = -1 //-1 means record not found

 int MIDDLE,

 LEFT = 0,

 RIGHT = array_size-1;

 while ((LEFT<= RIGHT) && (!found))

 { MIDDLE = (LEFT + RIGHT)/ 2; // Get middle index

 if (array[MIDDLE] == search_key)

 { index = MIDDLE;

 found = true;

 }

 else if (array[MIDDLE] > search_key)

 RIGHT= MIDDLE– 1; // search is focused

 // on the left side of list

 else

 LEFT= MIDDLE+ 1 // search is focused

 // on the right side of the list

 } //end while

 return index;

}//end function

Binary Search on a Sorted List

• Search starts by obtaining the MIDDLE index

of the array

• assume:

– search_key = 35

• MIDDLE= (0 + 6) / 2

 = 3 { First MIDDLE index}

8

35

11 22 33 44 55 66 77

search_key

array

• search_key 35 is compared with the element at the

fourth index in the array, which is array[3] with the value

44.

– search_key < MIDDLE value, therefore search will be

focused on the elements between the first index and
the third index only (index 1 to MIDDLE-1)

• Process to obtain MIDDLE index is repeated

 MIDDLE = (0 + 2) / 2

 = 1 { second MIDDLE index}

Search_key 35 is compared with the element at the second

index, which is array[1] with the value 22

– search_key > MIDDLE value, therefore search will be

focused only on the elements between the second
MIDDLE index to the first MIDDLE index.

 MIDDLE = (2 + 2) / 2

 = 2 { third MIDDLE index}

9

Binary Search on Sorted List

• Element at the third index, array[2] with the
value 33 is not equal to the value of the search
key.

• Search process has reached the last element of
the traversed subset, therefore search is
terminated and assumed fail.

• To search from the list sorted descending,
change operator “ > ” to operator “ < “ to the
following statement :

 else if (array [MIDDLE] >

search_key)

 RIGHT = MIDDLE – 1;

10

Binary Search on Sorted List

Step 1

Steps to Execute Binary Search

11

false

12 14 16 18 20 22 24 26 28 30

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

LEFT MIDDLE RIGHT

LEFT

MIDDLE

RIGHT

4

9

0

-1

22

found

index

search_key

array

Assume: search_key = 22, array_size = 10

Step 2

12

12 14 16 18 20 22 24 26 28 30

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

MIDDLE RIGHT

7

9

5

-1

22

false found

index

search_key

array

LEFT

LEFT

MIDDLE

RIGHT

Steps to Execute Binary Search

Step 3

13

12 14 16 18 20 22 24 26 28 30

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

LEFT

MIDDLE

RIGHT

LEFT

MIDDLE

RIGHT

5

6

5

5

22

true status

index

search_key

array

Steps to Execute Binary Search

Binary Search Analysis
• Binary Search starts searching by comparing

element in the middle. Thus the searching
process start at n/2 for a list size = n.

• If the middle value does not matches with the
search key, then the searching area will be
reduced to the left or right sublist only. This will
reduce the searching area to ½ n.

• From half of the list, the second middle value will
be identified. Again, if the middle value does not
matches with the search key, the searching area
will be reduced to the left or right sub list only.
The searching area will reduce ½ (½ n).

14

Binary Search Analysis

• The process of looking for middle point and
reducing the searching area to the left or right
sublist will be repeated until the middle value is
equal to the middle value (search key is found)
or the last value in sublist has been traverse.

• If the repetition occur k times, then at iteration
k , the searching area is reduced to (½)kn.

15

Binary Search Analysis

• figure above shows the reducing size for
binary search area.

• At iteration k for array size = n , searching
area will be reduced from n to (½)kn.

16

k

n

n

(1/2)
k
n

Binary Search Analysis
• Best case for binary search happen if the

search key is found in the middle array.
O(1).

• Worse case for binary search happen if the
search key is not in the list or the searching
size equal to 1.

• The searching time for worse case is
O(log2n).

17

Search Conclusion
• Searching is a process to allocate an element in a list and

return the index of the searched element.

• Basic searching techniques : sequential search and binary
search.

• Sequential search can be implemented on sorted and
unsorted list, while binary search can be implemented
only on sorted list.

• Sequential search on sorted data is more efficient than
sequential search on unsorted data.

• Binary search is more efficient than sequential search.

• Basic searching techniques explained in this class are
only suitable for small sets of data. Hashing and indexing
are suitable for searching large sets of data.

18

