
Searching Techniques:
Sequential Search

SCJ2013 Data Structure & Algorithms

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

Objectives
 At the end of the class, students are expected to be able

to do the following:

• Understand the searching technique concept and the

purpose of searching operation.
• Understand the implementation of basic searching

algorithm;
1. Sequential search.

• Sequential search on unsorted data.
• Sequential search on sorted data.

2. Binary Search.
• Able to analyze the efficiency of the searching

technique.
• Able to implement searching technique in problem

solving.

1.0 Introduction

Class Content

Introduction

• Searching Definition
– Clifford A. Shaffer[1997] define searching as a

process to determine whether an element is a

member of a certain data set.

– The process of finding the location of an

element with a specific value (key) within a

collection of elements

– The process can also be seen as an attempt to

search for a certain record in a file.

• Each record contains data field and key field

• Key field is a group of characters or numbers used as

an identifier for each record

• Searching can done based on the key field.

Example: Table of Employee

Record

Index employeeID employeeIC empName Post

[0] 1111 701111-11-1234 Ahmad Faiz

Azhar

Programmer

[1]

122 800202-02-2323 Mohd. Azim

Mohd. Razi

Clerk

[2]

211 811003-03-3134 Nurina Raidah

Abdul Aziz

System

Analyst

Searching can be done based on certain field:
 empID, or empl_IC, or empName

To search empID = 122, give us the record value at index 1.

To search empID = 211, give us the record value at index 1.

Introduction

• Among Popular searching techniques:
–Sequential search

–Binary Search

–Binary Tree Search

– Indexing

• Similar with sorting, Searching can also be
implemented in two cases, internal and
external search.

Introduction

• Similar with sorting, Searching can also be
implemented in two cases, internal and
external search.

External search – only implemented if searching is
done on a very large size of data. Half of the data
need to be processed in RAM while half of the data
is in the secondary storage.

 Internal search – searching technique that is
implemented on a small size of data. All data can be
load into RAM while the searching process is
conducted.

 The data stored in an array

2.0 Basic Sequential
Search

Basic Sequential Search

• Basic sequential search usually is implemented
to search item from unsorted list/ array.

• The technique can be implemented on a small
size of list. This is because the efficiency of
sequential search is low compared to other
searching techniques.

• In a sequential search:

1. Every element in the array will be examine
sequentially, starting from the first element.

2. The process will be repeated until the last element
of the array or until the searched data is found.

10

Basic Sequential (BS) Search

• Used for searching that involves records

stored in the main memory (RAM)

• The simplest search algorithm, but is also the

slowest

• Searching strategy:

1. Examines each element in the array one by one

(sequentially) and compares its value with the one

being looked for – the search key

2. Search is successful if the search key matches with
the value being compared in the array. Searching

process is terminated.

3. else, if no matches is found, the search process is

continued to the last element of the array. Search is

failed array if there is no matches found from the

array.

11

int SequenceSearch(int search_key,

 const int array [],

 int array_size)

{ int p;

 int index =-1; //-1 means record is not found

 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){

 indeks = p;//assign current array index

 break;

 }//end if

 } //end for

 return index;

} //end function

12

Basic Sequential Search
Function

Every element in the array will

be examined until the search

key is found

Or until the search process

has reached the last element

of the array

13

-1

search_key 22

11 33 22 55 44

[0] [1] [2] [3] [4]

index

array

BS Search implementation –
Search key = 22

int SequenceSearch(int search_key,

 const int array [],

 int array_size)

{ int p;

 int index =-1;

 //-1 means record is not found

 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){

 indeks = p;

 //assign current array index

 break;

 }//end if

 } //end for

 return index;

} //end function

14

p=0

p=1

-1

22

11 33 22 55 44

[0] [1] [2] [3] [4]

-1

22

11 33 22 55 44

[0] [1] [2] [3] [4]

index

index

array

search_key

search_key

array

int SequenceSearch(int search_key,

 const int array [],

 int array_size)

{ int p;

 int index =-1;

 //-1 means record is not found

 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){

 indeks = p;

 //assign current array index

 break;

 }//end if

 } //end for

 return index;

} //end function

BS Search implementation –
Search key = 22

15

p=2

2

22

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

index

array

int SequenceSearch(int search_key,

 const int array [],

 int array_size)

{ int p;

 int index =-1;

 //-1 means record is not found

 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){

 indeks = p;

 //assign current array index

 break;

 }//end if

 } //end for

 return index;

} //end function

BS Search implementation –
Search key = 22

Search for key 22 is successful

&

return 2

16

false

25

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

found

array

int SequenceSearch(int search_key,

 const int array [],

 int array_size)

{ int p;

 int index =-1;

 //-1 means record is not found

 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){

 indeks = p;

 //assign current array index

 break;

 }//end if

 } //end for

 return index;

} //end function

BS Search implementation –
Search key = 25

p=0,1,2,3,4 => search key is not matches

Search is unsuccessful

-1 index

false

25

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

found

array

-1 index

• Searching time for sequential search is
O(n).

• If the searched key is located at the end of
the list or the key is not found, then the
loop will be repeated based on the
number of element in the list, O(n).

• If the list can be found at index 0, then
searching time is, O(1).

17

Sequential Search Analysis

• Problem:

– Search key is compared with all elements in the list,
O(n) time consuming for large datasets.

• Solution:

– The efficiency of basic search technique can be

improved by searching on a sorted list.

– For searching on ascending list, the search key will be

compared one by one until :

1. the searched key is found.

2. Or until the searched key value is smaller than the
item compared in the list.

=> This will minimize the searching process.

18

Improvement of Basic
Sequential Search Tech.

Sequential Searching on Sorted Data

19

int SortedSeqSearch (int search_key, const int

array[],

 int array_size)

{ int p;

 int index = -1; //-1 means record not found

 for (p = 0; p < array_size; p++)

 { if (search_key < array [p])

 break;

 // loop repetition terminated

 // when the value of search key is

 // smaller than the current array element

 else if (search_key == array[p])

 {

 index = p; // assign current array index

 break;

 } // end else-if

 }//end for

 return index; // return the value of index

} //end function

Steps to Execute Sequential Search
Function on a Sorted List

Assume:

– search_key = 25

– array_size = 5

20

Step 1 Initial value for

variable index

and array

elements

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

21

Step 2 p = 1

search_key is

compared with

the first element

in the array

Step 3 p = 2

search_key is

compared with

the second

element in the
array

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

index

array

search_key

Steps to Execute Sequential Search
Function on a Sorted List

Step 4

p = 3

search_key is

compared with

the third element

in the array

• the value of

 search_key

 is smaller than

the current

element of array

• loop repetition is

 terminated using

 “break”

statement

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

Steps to Execute Sequential Search
Function on a Sorted List

• Conclusion:
– If the elements in the list is not in a sorted

(asc/desc) order, loop will be repeated

based on the number of elements in the

list

– When the list is not sorted the loop is

repeated 5 times, compared to 3 times if

the list is in sorted order as shown in the

previous example.

– If the list is sorted in descending order,

change operator “<“ to operator “>” in
the loop for

23

Steps to Execute Sequential Search
Function on a Sorted List

