SSCM 1023 MATHEMATICAL METHODS I

TOPIC: IMPROPER INTEGRAL

SHAZIRAWATI MOHD PUZI
ZUHAILA ISMAIL \& NORZIEHA MUSTAPHA

> DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

IMPROPER INTEGRALS

5.1 L'Hopital Rule

5.1.1 L'Hopital Rule for $0 / 0$
5.1.2 L'Hopital Rule for ∞ / ∞

5.2 Improper Integrals

5.2.1 Improper Integral Type 1
5.2.2 Improper Integral Type 2

5.3 References

5.1 L'Hopital Rule

If you are doing any limit and you get something in the form of $0 / 0$ or ∞ / ∞, then you should probably try to use L'Hopital rule. The basic idea of L'Hospital rule is simple.

Consider the limit

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} .
$$

If both the numerator and the denominator are finite at a and $g(a) \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}
$$

Example 1:

$$
\lim _{x \rightarrow 3} \frac{x^{2}+1}{x+2}=\frac{10}{5}=2
$$

But what happen if both the numerator and the denominator tend to zero?

It is not clear what the limit is. In fact, depending on what functions $f(x)$ and $g(x)$ are, the limit can be anything at all!

5.1.1 L'Hopital Rule for $0 / 0$

Suppose $\lim f(x)=\lim g(x)=0$. Then

1. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then

$$
\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L .
$$

2. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ tends to $+\infty$ or $-\infty$ in the limit, then so does $\lim \frac{f(x)}{g(x)}$.

Example 2:
Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ by L'Hopital rule.

Example 3:
Find $\lim \frac{2 \ln x}{x-1}$.

$$
\lim _{x \rightarrow 1} x-1
$$

Example 4:
Find $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$.

Example 5:
Find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$.
Note: If the numerator and the denominator both tend to $+\infty$ or $-\infty$, L'Hopital rule still applies.

5.1.2 L'Hopital Rule for ∞ / ∞

Suppose $\lim f(x)$ and $\lim g(x)$ are both infinite. Then

1. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$,

$$
\text { then } \quad \lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L .
$$

2. If $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ tends to $+\infty$ or $-\infty$ in the limit, then

$$
\text { so does } \lim \frac{f(x)}{g(x)}
$$

Example 6:
Find $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$.

Example 7:
Find $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}$.

OPENCOURSEWARE

5.2 Improper Integrals

The definite integral

$$
\int_{a}^{b} f(x) d x
$$

is known as improper integral if either

1) one or both limits are infinite, or
2) $f(x)$ is undefined at certain points on/in
the interval.

Note: We called case:

1) as Type I
2) as Type II

5.2.1 Improper Integral Type I

1) If $f(x)$ is continuous in the interval $[a, \infty)$,

$$
\text { then } \int_{a}^{\infty} f(x) d x=\lim _{T \rightarrow \infty} \int_{a}^{T} f(x) d x .
$$

2) If $f(x)$ is continuous in the interval $(-\infty, b]$,

$$
\text { then } \int_{-\infty}^{b} f(x) d x=\lim _{T \rightarrow-\infty} \int_{T}^{b} f(x) d x .
$$

Note: the improper integrals in 1) and 2) is said to converge if the limit exists and diverge if the limit does not exist.
3) If $f(x)$ is continuous in the interval $(-\infty, \infty)$,

$$
\text { then } \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{0}^{\infty} f(x) d x
$$

with any real number c.

Note: the improper integrals in 3) is said to converge if both terms converge and diverge if either term diverges.

Example 8:

Determine whether the following integrals are convergent or divergent:

1) $\int_{0}^{\infty} e^{-2 x} d x$
2) $\int_{0}^{\infty} x e^{-x} d x$
3) $\int_{-\infty}^{2} \frac{d x}{5-2 x}$
4) $\int_{-\infty}^{\infty} \frac{x}{1+x^{2}} d x$

5.2.2 Improper Integral Type II

1) If $f(x)$ is continuous on $[a, b)$, and
discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{T \rightarrow b^{-}} \int_{a}^{T} f(x) d x .
$$

2) If $f(x)$ is continuous on $(a, b]$, and
discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{T \rightarrow a^{+}} \int_{T}^{b} f(x) d x .
$$

Note: the improper integrals in 1) and 2) is said to converge if the limit exists and diverge if the limit does not exist.
3) If $f(x)$ has discontinuity at c, where $a<c<b$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

Note: the improper integrals in 3) is said to converge if both terms converge and diverge if either term diverges.

Example 9:
Determine whether $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x$ converge or diverge.

Example 10:
Determine whether $\int_{1}^{2} \frac{d x}{1-x^{2}}$ converge or diverge.

Example 11:
Find $\int_{-1}^{1} \ln x d x$ if possible.

5.3 References

1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. Engineering mathematics I, Penerbit UTM, 2012.
