SSCM 1023 MATHEMATICAL METHODS I

TOPIC: INTEGRATION

SHAZIRAWATI MOHD PUZI
 \&
 NORZIEHA MUSTAPHA

DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

INTEGRATION

4.1 Integration of hyperbolic functions
4.2 Integration of inverse trigonometric functions
4.3 Integration of inverse hyperbolic functions
4.4 Further Applications of Integrations
4.5 Appendix
4.6 References

Recall: Methods involved:

- Substitution of u
- By parts
- Tabular method
- Partial fractions
- Trigonometric substitutions

4.1 Integrals of Hyperbolic Functions

Table of Integration for Hyperbolic Functions

1. $\int \sinh x d x=\cosh x+C$
2. $\int \cosh x d x=\sinh x+C$
3. $\int \sec h^{2} x d x=\tanh x+C$
4. $\int \operatorname{cosech}^{2} x d x=-\operatorname{coth} x+C$
5. $\int \sec h x \tanh x d x=-\sec h x+C$
6. $\int \operatorname{cosech} x \operatorname{coth} x d x=-\operatorname{cosech} x+C$

Example 1:

Integrate the following hyperbolic functions using appropriate technique (definition, identities, etc) and method (substitution, by parts, tabular, etc).
a) $\int \sinh 2 x \cosh 3 x d x$
b) $\int \frac{\cosh x}{2+3 \sinh x} d x$
c) $\int \sinh ^{3} x d x$
d) $\int x \cosh 2 x d x$
e) $\quad \int \sinh \left(\frac{x}{2}\right) \cosh \left(\frac{x}{2}\right) d x$
f) $\int \sqrt{\tanh x} \sec h^{2} x d x$

4.2 Integration of Inverse Trigonometric Functions

Integration formulae of the Inverse Trigonometric Functions

Example 2 :

1. Evaluate the following integrals
a) $\int_{0}^{1} \tan ^{-1} x d x$
b) $\int \frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}} d x$
c) $\int \frac{\sqrt{\tan ^{-1} x}}{1+x^{2}} d x$
2. Use partial fraction decomposition to solve

$$
\int_{0}^{1} \frac{x^{2}-2 x}{(2 x+1)\left(x^{2}+1\right)} d x
$$

Differentiation	Integration
$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C$
$\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$	$\int \frac{-d x}{\sqrt{1-x^{2}}}=\cos ^{-1} x+C$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$	$\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C$
$\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}$	$\int \frac{-d x}{1+x^{2}}=\cot ^{-1} x+C$
$\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{\|x\| \sqrt{x^{2}-1}}$	$\int \frac{d x}{\|x\| \sqrt{x^{2}-1}}=\sec ^{-1} x+C$
$\frac{d}{d x}\left(\csc ^{-1} x\right)=\frac{-1}{\|x\| \sqrt{x^{2}-1}}$	$\int \frac{-d x}{\|x\| \sqrt{x^{2}-1}}=\csc ^{-1} x+C$

Example 3 : Evaluate the following integrals

1. a) $\int \frac{d x}{\sqrt{16-x^{2}}}$
b) $\int \frac{2 d x}{3+x^{2}}$
2. a)

b) $\int \frac{d x}{4+3 x^{2}}$
3. Use completing the square technique to solve:
a)

$$
\int \frac{d x}{\sqrt{-x^{2}+2 x+3}}
$$

b) $\int \frac{d x}{x^{2}-2 x+2}$
4. By using substitution $t=\tan \left(\frac{x}{2}\right)$, show that

$$
\int \frac{d x}{5+4 \cos x}=\frac{2}{3} \tan ^{-1}\left(\frac{1}{3} \tan \left(\frac{x}{2}\right)\right)+C
$$

4.3 Integration involving Inverse Hyperbolic Functions

 Integration formulae of the Inverse Hyperbolic Functions:| Differentiation | Integration |
| :--- | :--- |
| $\frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}$ | $\int \frac{d x}{\sqrt{1+x^{2}}}=\sinh ^{-1} x+C$ |
| $\frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$ | $\int \frac{d x}{\sqrt{x^{2}-1}}=\cosh ^{-1} x+C$ |
| $\frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}}$ | $\int \frac{d x}{1-x^{2}}=\tanh ^{-1} x+C$ |

Example 4: Solve the following:
a) $\int \frac{d x}{\sqrt{3 x^{2}+2}}$
b)

c)

$$
\int \frac{d x}{\sqrt{x^{2}+4 x+3}}
$$

2. Show that $\int \frac{x+1}{\sqrt{x^{2}+1}} d x=\sqrt{x^{2}+1}+\sinh ^{-1} x+C$.

4.4 Further Applications of Integrations

4.4.1 a) Arc Length in Parametric Form

The length of the parametric curve $(x(t), y(t))$ as t varies from t_{0} to t_{1} is given by

$$
\mathcal{L}=\int_{t=t_{0}}^{t=t_{1}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Example 5:

Consider the curve given by $x(t)=\cos t, y(t)=\sin t, 0 \leq t \leq \pi$. Find the length of the curve.

Its length is:

4.4.1 b) Arc Length in Cartesian Form

If we wish to find the length of a Cartesian curve which is the graph of a function

$$
y=f(x), a \leq x \leq b,
$$

we let

$$
x(t)=t, \quad y(t)=f(x(t))=f(x)
$$

and we get

$$
x^{\prime}(t)=1 \text { and } y^{\prime}(t)=f^{\prime}(x(t)) x^{\prime}(t)=f^{\prime}(x),
$$

therefore we have a simple formula for the length:

$$
\mathcal{L}=\int_{x=a}^{x=b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

Similarly, if we have a curve $x=g(y), c \leq y \leq d$, we get

$$
\mathcal{L}=\int_{y=c}^{y=d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=\int_{c}^{d} \sqrt{1+\left(x^{\prime}\right)^{2}} d y
$$

Example 6:

Find the length of the curve
a) $y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}, 0 \leq x \leq 3$.
b) $x=\frac{2}{3}(y-1)^{\frac{3}{2}}, 1 \leq y \leq 4$.

Example 7:

Find the length of the arc of the parabola $y^{2}=x$ from $(0,0)$ to $(1,1)$.

Ans: $L=\frac{\sqrt{5}}{2}+\frac{\ln (\sqrt{5}+2)}{4}$

4.4.2 Arc Length in Polar Coordinates

The length of a curve with polar equation $r=f(\theta), a \leq \theta \leq b$, is

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example 8:

a) Find the length of the curve $r=\theta, 0 \leq \theta \leq 1$.

$$
\frac{1}{2}(\sqrt{2}+\ln (1+\sqrt{2}))
$$

b) Find the length of the cardioid $r=1-\cos \theta, 0 \leq \theta \leq 2 \pi$.

4.4.3 Area of Surface of Revolution in Cartesian Form

Consider two cones, with one being a subset of the other; we can calculate the area of the region between the bases of the two cones. This region is called a frustum.

Let the larger and smaller cones have heights and radii h_{2} and r_{2} and h_{1} and r_{1}.

It is clear that $R_{1}=\sqrt{r_{1}^{2}+h_{1}^{2}}$ and $R_{2}=\sqrt{r_{2}^{2}+h_{2}^{2}}$. Therefore, area of larger cone, $A_{2}=\pi r_{2} R_{2}=\pi r_{2} \sqrt{r_{2}^{2}+h_{2}^{2}}$, area of smaller cone, $A_{1}=\pi r_{1} R_{1}=\pi r_{1} \sqrt{r_{1}^{2}+h_{1}^{2}}$.

The area of the frustum, thus,

$$
\begin{aligned}
A & =A_{2}-A_{1} \\
& =\pi r_{2} \sqrt{r_{2}^{2}+h_{2}^{2}}-\pi r_{1} \sqrt{r_{1}^{2}+h_{1}^{2}} \\
& =\pi\left[r_{2} \sqrt{r_{2}^{2}+h_{2}^{2}}-r_{1} \sqrt{r_{1}^{2}+h_{1}^{2}}\right] \\
& =\pi\left(r_{2} R_{2}-r_{1} R_{1}\right) \\
& =2 \pi r R \quad \text { where } R=R_{2}-R_{1} \text { and } r=\frac{r_{1}+r_{2}}{2}
\end{aligned}
$$

We can then use this formula to derive a formula for the area of the surface obtained by rotating the curve $(x(t), y(t)), t_{1} \leq t \leq$ t_{2} about the x - and y-axes respectively:

$$
S_{x}=\int_{t_{1}}^{t_{2}} 2 \pi y(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

$$
S_{y}=\int_{t_{1}}^{t_{2}} 2 \pi x(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

If the curve is the graph of a function $y=f(x), a \leq x \leq b$, then the area of the surface obtained by revolving the curve about the x-axis is

$$
S_{x}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

and the area of the surface obtained by revolving the curve about the y-axis is

$$
S_{y}=\int_{a}^{b} 2 \pi x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

If the curve is the graph of a function $x=g(y), c \leq x \leq d$, then the area of the surface obtained by revolving the curve about the x-axis is

$$
S_{x}=\int_{c}^{d} 2 \pi y \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

and the area of the surface obtained by revolving the curve about the y-axis is

$$
S_{y}=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example 9:

a) Find the area of the surface obtained by rotating the curve $y^{2}=4 x+4,0 \leq x \leq 8$, about the x-axis.

$$
\text { Ans: } \frac{16 \pi}{3}(5 \sqrt{5}-1) \sqrt{2}
$$

b) Find the area of the surface obtained by rotating the curve $x=1+2 y^{2}, 1 \leq y \leq 2$, about the x-axis.

$$
\text { Ans: } \frac{\pi}{24}(65 \sqrt{65}-17 \sqrt{17})
$$

4.4.4 Area of a Surface of Revolution in Polar Form

The areas of the surfaces generated by revolving the curve $r=f(\theta), a \leq \theta \leq b$ about the x - and y-axis are given by the following formulas:

- Revolution about x-axis, $(y \geq 0)$:

$$
S_{x}=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

- Revolution about y-axis, $x \geq 0$:

$$
S_{y}=\int_{a}^{b} 2 \pi r \cos \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example 10:

Find the area of the surface generated by revolving

$$
r=\sqrt{\cos 2 \theta}, 0 \leq \theta \leq \frac{\pi}{4}
$$

about the x-axis.

Ans: $2 \pi-\frac{2 \pi}{\sqrt{2}}$

Summary Formula for Area of Revolution:

Type of Equation	Revolve about x-axis	Revolve about y-axis
Parametric $x=f(t)$, $y=g(t)$	$S_{x}=\int_{t_{1}}^{t_{2}} 2 \pi y(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$	$S_{y}=\int_{t_{1}}^{t_{2}} 2 \pi x(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$
$y=f(x)$	$S_{x}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$	$S_{y}=\int_{a}^{b} 2 \pi x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
$x=g(y)$	$S_{x}=\int_{c}^{d} 2 \pi y \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$	$S_{y}=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$
Polar form $r=f(\theta)$	$S_{x}=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$	$S_{y}=\int_{a}^{b} 2 \pi r \cos \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

4.5 Appendix

1. Partial fraction decomposition.

S.No.	Form of the rational function	Form of the partial fraction
1.	$\frac{p x+q}{(x-a)(x-b)}, a \neq b$	$\frac{\mathrm{~A}}{x-a}+\frac{\mathrm{B}}{x-b}$
2.	$\frac{p x+q}{(x-a)^{2}}$	$\frac{\mathrm{~A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}}$
3.	$\frac{p x^{2}+q x+r}{(x-a)(x-b)(x-c)}$	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{x-b}+\frac{\mathrm{C}}{x-c}$
4.	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B}}{(x-a)^{2}+q x+r}+\frac{\mathrm{C}}{x-b}$	
5.	$\frac{p)^{2}(x-b)}{(x-a)\left(x^{2}+b x+c\right)}$	$\frac{\mathrm{A}}{x-a}+\frac{\mathrm{B} x+\mathrm{C}}{x^{2}+b x+c}$,
	where $x^{2}+b x+c$ cannot be factorised further	

2. Integrations involving $\sqrt{A x^{2}+B x+C}$

Expression	Substitution
$\sqrt{x^{2}+k^{2}}$	$x=k \tan \theta$ or $x=k \sinh \theta$
$\sqrt{x^{2}-k^{2}}$	$x=k \sec \theta$ or $x=k \cosh \theta$
$\sqrt{k^{2}-x^{2}}$	$x=k \sin \theta$ or $x=k \tanh \theta$

4.6 References

1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. Engineering mathematics I, Penerbit UTM, 2012.
