

SSCM 1023 MATHEMATICAL METHODS I

TOPIC: FURTHER TRANSCENDENTAL FUNCTIONS

SHAZIRAWATI MOHD PUZI &

NORZIEHA MUSTAPHA

DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

innovative • entrepreneurial • global

2.1 Review

- 2.1.1 Graphs of Trigonometric Functions
- 2.1.2 Graphs of Exponential Functions
- 2.1.3 Trigonometric Identities
- 2.1.4 Graphs of f and f^{-1}
- 2.2 Hyperbolic Functions
 - 2.2.1 Definition of Hyperbolic Functions
 - 2.2.2 Graphs of Hyperbolic Functions
 - 2.2.3 Hyperbolic Identities
- 2.3 Inverse Functions
 - 2.3.1 Inverse Trigonometric Functions
 - 2.3.2 Inverse Trigonometric Identities
 - 2.3.3 Inverse Hyperbolic Functions
 - 2.3.4 Log Form of the Inverse Hyperbolic Functions
- 2.4 References

2.1 Review

innovative • entrepreneurial • global

• Symmetric with respect to origin

- Domain: $(-\infty, \infty)$, Range: $(0, \infty)$
- Natural Exponential Function $f(x) = e^x$

TRIGONOMETRIC IDENTITIES

The six trigonometric functions:				
$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{y}{r}$	$\csc \theta = \frac{\mathrm{hyp}}{\mathrm{opp}} = \frac{r}{y} = \frac{1}{\sin \theta}$			
$\cos \theta = \frac{\mathrm{adj}}{\mathrm{hyp}} = \frac{x}{r}$	$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{r}{x} = \frac{1}{\cos \theta}$			
$\tan \theta = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$	$\cot \theta = \frac{\mathrm{adj}}{\mathrm{opp}} = \frac{x}{y} = \frac{1}{\tan \theta}$			
Sum or difference of two angles: $sin(a \pm b) = sin a cos b \pm cos a sin b$ $cos(a \pm b) = cos a cos b \mp sin a sin b$				
$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$				
Double angle formulas:	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$			
$\sin 2\theta = 2\sin\theta\cos\theta$	$\cos 2\theta = 2\cos^2 \theta - 1$			
$\cos 2\theta = 1 - 2\sin^2 \theta$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$			
Pythagorean Identities:	$\sin^2\theta + \cos^2\theta = 1$			
$\tan^2 \theta + 1 = \sec^2 \theta$	$\cot^2 \theta + 1 = \csc^2 \theta$			
Half angle formulas:				
$\sin^2\theta = \frac{1}{2}(1 - \cos 2\theta)$	$\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$			
$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$	$\cos\frac{\theta}{2} = \pm \sqrt{\frac{1+\cos\theta}{2}}$			
$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \frac{\sin\theta}{1+\cos\theta}$	$\frac{1-\cos\theta}{\sin\theta} = \frac{1-\cos\theta}{\sin\theta}$			

Sum and product formulas:

 $\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$ $\cos a \sin b = \frac{1}{2} [\sin(a+b) - \sin(a-b)]$ $\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$ $\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$ $\sin a + \sin b = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})$ $\sin a - \sin b = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$ $\cos a + \cos b = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$ $\cos a - \cos b = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos A$ where *A* is the angle of a scalene triangle opposite side *a*.

Radian measure: 8.1 p420

1 radian =
$$\frac{180^{\circ}}{\pi}$$

 $1^\circ = \frac{\pi}{180}$ radians

Reduction formulas: $sin(-\theta) = -sin\theta$ $cos(-\theta) = cos\theta$ $sin(\theta) = -sin(\theta - \pi)$ $cos(\theta) = -cos(\theta - \pi)$ $tan(-\theta) = -tan\theta$ $tan(\theta) = tan(\theta - \pi)$ $\mp sin x = cos(x \pm \frac{\pi}{2})$ $\pm cos x = sin(x \pm \frac{\pi}{2})$ Complex Numbers: $e^{\pm j\theta} = cos \theta \pm j sin \theta$ $cos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$ $sin \theta = \frac{1}{12}(e^{j\theta} - e^{-j\theta})$

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees	Radians	sin θ	cos θ	tan θ	cot θ	sec θ	csc θ
0°	0	0	1	0	Undefined	1	Undefined
30°	π/6	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$	$2\sqrt{3}/3$	2
45°	π/4	$\sqrt{2}/2$	$\sqrt{2}/2$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	π/3	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\sqrt{3}/3$	2	2√3/3
90°	π/2	1	0	Undefined	0	Undefined	1
120°	2π/3	$\sqrt{3}/2$	-1/2	- \sqrt{3}	- √3 / 3	-2	2√3/3
135°	3π/4	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	-1	- \sqrt{2}	$\sqrt{2}$
150°	5π/6	1/2	$-\sqrt{3}/2$	- √3/3	- \sqrt{3}	$-2\sqrt{3}/3$	2
180°	π	0	-1	0	Undefined	-1	Undefined
210°	7π/6	-1/2	- \sqrt{3} / 2	$\sqrt{3}/3$	$\sqrt{3}$	$-2\sqrt{3}/3$	-2
225°	5π/4	- √2 / 2	$-\sqrt{2}/2$	1	1	- \sqrt{2}	- √2
240°	4π/3	- \sqrt{3} / 2	-1/2	$\sqrt{3}$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$
270°	3π/2	-1	0	Undefined	0	Undefined	-1
300°	5π/3	- \sqrt{3} / 2	1/2	- \sqrt{3}	- \sqrt{3}	2	$-2\sqrt{3}/3$
315°	7π/4	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	11π/6	-1/2	$\sqrt{3}/2$	-√3/3	- \sqrt{3}	$2\sqrt{3}/3$	-2
360°	2π	0	1	0	Undefined	1	Undefined

innovative entrepreneurial giobai

2.1.4 Graphs of f and f^{-1}

Inverse Functions

The inverse of a function *f* is denoted by f^{-1} . The inverse reverses the original function. Hence, if f(a) = b then $f^{-1}(b) = a$

Note: $f^{-1}(x)$ does **not** mean 1/f(x).

One to one Functions

If a function is to have an inverse which is also a function then it must be **one to one**. This means that a horizontal line will never cut the graph more than once. i.e we cannot have f(a) = f(b) if $a \neq b$,

Two different inputs (*x* values) are not allowed to give the same output (*y* value).

innovative • entrepreneurial • global

Drawing the graph of the Inverse

The graph of $y = f^{-1}(x)$ is the reflection in the line y = x of the graph of y = f(x).

Example: Find the inverse of the function $y = f(x) = (x-2)^2 + 3$, $x \ge 2$ Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same axes showing the relationship between them.

Domain:

This is the function we considered earlier except that its domain has been restricted to $x \ge 2$ in order to make it one-to-one. We know that the Range of *f* is $y \ge 3$ and so the domain of f^{-1} will be $x \ge 3$.

Rule:

Swap x and y to get $x = (y-2)^2 + 3$. Now make y the main subject: $x-3 = (y-2)^2$ $\sqrt{(x-3)} = y-2$ $y = 2 + \sqrt{(x-3)}$ Hence, the final answer is: $f^{-1}(x) = 2 + \sqrt{(x-3)}$, $x \ge 3$

Graphs

Reflect in y = x to get the graph of the inverse function.

Note: Remember with inverse functions everything swaps over. Input and output (x and y) swap over Domain and Range swap over Reflecting in y = x swaps over the coordinates of a point so (a,b) on one graph becomes (b,a) on the other.

Note: we could also have $-\sqrt{(x-3)} = y-2$ and $y = 2 - \sqrt{(x-3)}$ But this would not fit our function as y must be greater than 2 (see graph)

OPENCOURSEWARE

2.2.1 Definition of Hyperbolic Functions

*	Hyperbolic Sine, pronounced "shine".
	$\sinh x = \frac{e^x - e^{-x}}{2}$

perbolic Cosine, pronounced "cosh".

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Hyperbolic Tangent, pronounced "tanh".

 $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \equiv \frac{e^{2x} - 1}{e^{2x} + 1}$

Hyperbolic Secant, pronounced "shek".

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

 Hyperbolic Cosecant, pronounced "coshek".

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

 Hyperbolic Cotangent, pronounced "coth".

$$\operatorname{coth} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

2.2.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the values of e^x and e^{-x} , its graphs is a combination of the exponential graphs.

(iii) Graph of tanh x

We see

- (i) $\tanh 0 = 0$
- (ii) $\tanh x$ always lies between y = -1 and y = 1.
- (iii) $\tanh(-x) = -\tanh x$
- (iv) It has horizontal asymptotes $y = \pm 1$.

2.2.3 Hyperbolic Identities

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed by hyperbolic functions.

- $1. \quad \cosh^2 x \sinh^2 x = 1$
- $2. \quad 1-\tanh^2 x = \sec h^2 x$
- 3. $\operatorname{coth}^2 x 1 = \operatorname{cos} ech^2 x$
- 4. $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$
- 5. $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$

6.
$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

7.
$$\sinh 2x = 2\sinh x \cosh x$$

8. $\cosh 2x = \cosh^2 x + \sinh^2 x = 2\cosh^2 x - 1 = 2\sinh^2 x + 1$

9.
$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in sign.

Trig. Identities	Hyperbolic Identities
$\sec\theta \equiv \frac{1}{\cos\theta}$ $\csc\theta \equiv \frac{1}{\sin\theta}$ $\cot\theta \equiv \frac{1}{\tan\theta}$ $\cos^2\theta + \sin^2\theta \equiv 1$	$\operatorname{sech} \theta = \frac{1}{\cosh \theta}$ $\operatorname{cosech} \theta = \frac{1}{\sinh \theta}$ $\operatorname{coth} \theta = \frac{1}{\tanh \theta}$ $\operatorname{cosh}^2 \theta - \sinh^2 \theta \equiv 1$
$1 + \tan^2 \theta \equiv \sec^2 \theta$ $1 + \cot^2 \theta \equiv \csc^2 \theta$	$1-\tanh^2\theta \equiv \mathrm{sech}^2\theta$ $\mathrm{coth}^2\theta - 1 \equiv \mathrm{cosech}^2\theta$
$\sin 2A \equiv 2\sin A \cos A$ $\cos 2A \equiv \cos^2 A - \sin^2 A$	$\sinh 2A \equiv 2\sinh A \cosh A$ $\cosh 2A \equiv \cosh^2 A + \sinh^2 A$
$\equiv 1 - 2\sin^2 A$ $\equiv 2\cos^2 A - 1$	$\equiv 1 + 2\sinh^2 A$ $\equiv 2\cosh^2 A - 1$

innovative • entrepreneurial • global

Examples 2.1

1. Sketch the graph of the following functions. State the domain and range. a) $y = \sinh x + 2$

b) $y = 2 \tanh 3x$

- 2. By using definition of hyperbolic functions,
 - a) Evaluate sinh(-4) and cosh(ln 2) to four decimal places.
 - b) Show that $2\cosh^2 x 1 = \cosh 2x$
 - c) Show that $\cosh^2 x \sinh^2 x = 1$

OPENCOURSEWARE

3. By using *identities of hyperbolic functions*, show that

$$\frac{1 - \tanh^2 x}{1 + \tanh^2 x} = \operatorname{sech} 2x$$

4. Solve the following for *x*, giving your answer in 4dcp.

```
a) 2\cosh x - \sinh x = 2
```

b) $\cosh 2x - \sinh x = 1$

2.3 Inverse Functions

Definition 2.3 (Inverse Functions)

OPENCOURSEWARE

If $f: X \to Y$ is a one-to-one function with the domain *X* and the range *Y*, then there exists an inverse function,

$$f^{-1}: Y \to X$$

where the domain is *Y* and the range is *X* such that

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Thus, $f^{-1}(f(x)) = x$ for all values of x in the domain f.

Note:

The graph of inverse function is reflections about the line y = x of the corresponding noninverse function.

2.3.1 Inverse Trigonometric Functions

Trigonometric functions are **periodic** hence they are **not one-to one**. However, if we **restrict the domain** to a chosen interval, then the restricted function is one-to-one and invertible.

(i) Inverse Sine Function

Look at the graph of $y = \sin x$ shown below

innovative • entrepreneurial • global

The graph of $y = \sin^{-1} x$ is shown below

 $f(x) = \sin^{-1} x$ $f(x) = \arcsin x$

ii) Inverse Cosine Function

Look at the graph of $y = \cos x$ shown below

The function $f(x) = \cos x$ is not one to one. But if the domain is restricted to $[0, \pi]$, then f(x) is one to one.

The inverse cosine function is defined as

$$y = \cos^{-1} x \iff x = \cos y$$

where
$$0 \leq y \leq \pi$$
 and $-1 \leq x \leq 1$.

The graph of $y = \cos^{-1} x$ is shown below

innovative • entrepreneurial • global

(iii) Inverse Tangent Function

Look at the graph of $y = \tan x$ shown below

The function $f(x) = \tan x$ is not one to one. But if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then f(x) is one to one.

The inverse tangent function is defined as $y = \tan^{-1} x \iff x = \tan y$ where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and $-\infty \le x \le \infty$.

The graph of $y = \tan^{-1} x$ is shown below

innovative • entrepreneurial • global

(iv) Inverse Cotangent Function

Domain:

Range:

(vi) Inverse Cosecant Function Domain: Range: $\frac{\pi}{2}$ π

innovative • entrepreneurial • global

Table of Inverse Trigonometric Functions

FunctionsDomainRange
$$y = \sin^{-1} x$$
 $[-1, 1]$ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $y = \cos^{-1} x$ $[-1, 1]$ $[0, \pi]$ $y = \tan^{-1} x$ $(-\infty, \infty)$ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $y = \csc^{-1} x$ $|x| \ge 1$ $\left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$ $y = \sec^{-1} x$ $|x| \ge 1$ $\left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$ $y = \cot^{-1} x$ $(-\infty, \infty)$ $(0, \pi)$

innovative • entrepreneurial • global

2.3.2 Inverse Trigonometric Identities

The definition of the inverse functions yields several formulas.

Inversion formulas

$\sin(\sin^{-1}x) = x$	for $-1 \le x \le 1$	$\sin^{-1}(\sin y) = y$	for $-90^\circ \le y \le 90^\circ$
$\cos(\cos^{-1}x) = x$	for $-1 \le x \le 1$	$\cos^{-1}(\cos y) = y$	for $0^\circ \le y \le 180^\circ$
$\tan (\tan^{-1} x) = x$	for all <i>x</i>	$\tan^{-1}(\tan y) = y$	for $-90^\circ \le y \le 90^\circ$

 \succ These formulas are valid only on the specified domain

Basic Relation

Reciprocal Identities

$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$	for $0 \le x \le 1$	$\csc^{-1} x = \sin^{-1}\left(\frac{1}{x}\right)$	for $ x \ge 1$
$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$	for $0 \le x \le 1$	$\sec^{-1} x = \cos^{-1}\left(\frac{1}{x}\right)$	for $ x \ge 1$
$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$	for $0 \le x \le 1$	$\cot^{-1} x = \tan^{-1}\left(\frac{1}{x}\right)$	for all <i>x</i>

Negative Argument Formulas

$$\sin^{-1}(-x) = -\sin^{-1} x \qquad \qquad \sec^{-1}(-x) = \pi - \sec^{-1} x \qquad \qquad \cos^{-1}(-x) = \pi - \cos^{-1} x$$

innovative • entrepreneurial • global

Examples 2.2:

1.Evaluate the given functions.

OPENCOURSEWARE

(i) $\sin(\sin^{-1} 0.5)$ (ii) $\sin(\sin^{-1} 3)$ (iii) $\sin^{-1}(\sin 45^{\circ})$ (iv) $\sin^{-1}(\sin 135^{\circ})$

2. Evaluate the given functions.

(i)
$$\operatorname{arcsec}(-2)$$
 (ii) $\operatorname{csc}^{-1}(\sqrt{2})$ (iii) $\operatorname{cot}^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

3. Show that

(i)
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$
 (ii) $\cos(\sin^{-1}x) = \sqrt{1 - x^2}$ (iii) $\sin^{-1}(-x) = -\sin^{-1}x$

4. Given that $2\sin^{-1}x + \sin^{-1}2x = \frac{\pi}{2}$, find the value of *x*.

innovative • entrepreneurial • global

2.3.3 Inverse Hyperbolic Functions

The three basic inverse hyperbolic functions are $\sinh^{-1} x$, $\cosh^{-1} x$, and $\tanh^{-1} x$.

Definition (*Inverse Hyperbolic Function*)

$$y = \sinh^{-1} x \Leftrightarrow x = \sinh y \quad \text{for all } x \text{ and } y \in \Re$$
$$y = \cosh^{-1} x \Leftrightarrow x = \cosh y \text{ for } x \ge 1 \text{ and } y \ge 0$$
$$y = \tanh^{-1} x \Leftrightarrow x = \tanh y \text{ for } -1 \le x \le 1, y \in \Re$$

Graphs of Inverse Hyperbolic Functions

innovative • entrepreneurial • global

2.3.4 Log Form of the Inverse Hyperbolic Functions

It may be shown that

(a)
$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$
 (b) $\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$
(c) $\tanh^{-1} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$ (d) $\coth^{-1} x = \frac{1}{2}\ln\left(\frac{x + 1}{x - 1}\right)$
(e) $\sec h^{-1} x = \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right)$ (f) $\csc ech^{-1} x = \ln\left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|}\right)$

Inverse Hyperbolic Cosine (Proof)

If we let
$$y = \cosh^{-1} x$$
, then $x = \cosh y = \frac{e^y + e^{-y}}{2}$

Hence,
$$2x = e^{y} + e^{-y}$$

On rearrangement,
$$(e^y)^2 - 2xe^y + 1 = 0$$

Hence, (using formula
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
),

$$e^{y} = \frac{2x \pm \sqrt{4x^2 - 4}}{2} = x \pm \sqrt{x^2 - 1}$$

Since $e^{y} > 0$,

$$\therefore e^y = x + \sqrt{x^2 - 1}$$

Taking natural logarithms,

$$y = \cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$$

Proof for sinh⁻¹ *x* $y = \sinh^{-1} x$, then $x = \sinh y = \frac{e^{y} - e^{-y}}{2}$ $\therefore 2x = e^{y} - e^{-y}$ (multiply with e^{y}) On rearrangement: $2xe^y = e^{2y} - 1$ $e^{2y} - 2xe^{y} - 1 = 0$ $e^{y} = x \pm \sqrt{x^2 + 1}$ Since $e^{y} > 0$, $\therefore e^{y} = x + \sqrt{x^2 + 1}$

Taking natural logarithms,

$$y = \sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$$

In the same way, we can find the expression for $tanh^{-1} x$ in logarithmic for

Examples 2.3:

1. Prove that
$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$

2. Evaluate

a) $\sinh^{-1}(0.5)$ b) $\cosh^{-1}(0.5)$ c) $\tanh^{-1}(-0.6)$

- 3. Solve the following equations:
 - a) $\sinh^{-1} x = \ln 2$ b) $\cosh^{-1} 5x = \sinh^{-1} 4x$

innovative • entrepreneurial • global

2.4 References

- 1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. *Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- 2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. *Engineering mathematics I*, Penerbit UTM, 2012.

innovative • entrepreneurial • global