SSCM 1023 MATHEMATICAL METHODS I

TOPIC: FURTHER TRANSCENDENTAL FUNCTIONS

SHAZIRAWATI MOHD PUZI
\&
NORZIEHA MUSTAPHA

DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

FURTHER TRANSCENDENTAL FUNCTIONS

2.1 Review
2.1.1 Graphs of Trigonometric Functions
2.1.2 Graphs of Exponential Functions
2.1.3 Trigonometric Identities
2.1.4 Graphs of f and f^{-1}
2.2 Hyperbolic Functions
2.2.1 Definition of Hyperbolic Functions
2.2.2 Graphs of Hyperbolic Functions
2.2.3 Hyperbolic Identities
2.3 Inverse Functions
2.3.1 Inverse Trigonometric Functions
2.3.2 Inverse Trigonometric Identities
2.3.3 Inverse Hyperbolic Functions
2.3.4 Log Form of the Inverse Hyperbolic Functions
2.4 References

2.1 Review

2.1.1 Graphs of Trigonometric Functions

- Period: 2π
- Domain: All real numbers
- Range: $[-1,1]$
- Symmetric with respect to the origin

- Period: 2π
- Domain: All real numbers
- Range: $[-1,1]$
- Symmetric with respect to the y axis

Graph of $y=\tan x$

- Period: π
- Domain: All real numbers except $\pi / 2+k \pi, k$ is an integer
- Range: All real numbers
- Symmetric with respect to origin

Graph of $y=\cot x$

- Period: π
- Domain: All real numbers except $k \pi, k$ is an integer
- Range: All real numbers
- Symmetric with respect to origin

Graph of $y=a^{x}, a>1$
Graph of $y=a^{x}, 0<a<1$

- Domain: $(-\infty, \infty)$, Range: $(0, \infty)$
- Natural Exponential Function $f(x)=e^{x}$

OPENCOURSEWARE

TRIGONOMETRIC IDENTITIES

The six trigonometric functions:

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{y}{r} & \text { csc } \theta=\frac{\text { hyp }}{\text { opp }}=\frac{r}{y}=\frac{1}{\sin \theta} \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{x}{r} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{r}{x}=\frac{1}{\cos \theta} \\
\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{y}{x}=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{x}{y}=\frac{1}{\tan \theta}
\end{array}
$$

Sum or difference of two angles:
$\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$
$\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$
$\tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$

Double angle formulas:

$$
\begin{array}{l}\sin 2 \theta=2 \sin \theta \cos \theta \\ \cos 2 \theta=1-2 \sin ^{2} \theta\end{array}
$$

Pythagorean Identities:
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\cos 2 \theta=2 \cos ^{2} \theta-1$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\cot ^{2} \theta+1=\csc ^{2} \theta$
Half angle formulas:
$\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
$\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$
$\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}$
$\tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{\sin \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\sin \theta}$

Sum and product formulas:
$\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$
$\cos a \sin b=\frac{1}{2}[\sin (a+b)-\sin (a-b)]$
$\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]$
$\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\sin a+\sin b=2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
$\sin a-\sin b=2 \cos \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$
$\cos a+\cos b=2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
$\cos a-\cos b=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$
Law of cosines: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
where A is the angle of a scalene triangle opposite side a.
Radian measure: 8.1 p420 $\quad 1^{\circ}=\frac{\pi}{180}$ radians

$$
1 \text { radian }=\frac{180^{\circ}}{\pi}
$$

Reduction formulas:
$\sin (-\theta)=-\sin \theta$

$$
\sin (\theta)=-\sin (\theta-\pi)
$$

$$
\begin{aligned}
& \cos (-\theta)=\cos \theta \\
& \cos (\theta)=-\cos (\theta-\pi) \\
& \tan (\theta)=\tan (\theta-\pi)
\end{aligned}
$$

$\tan (-\theta)=-\tan \theta$
$\mp \sin x=\cos \left(x \pm \frac{\pi}{2}\right) \quad \pm \cos x=\sin \left(x \pm \frac{\pi}{2}\right)$
Complex Numbers: $\quad e^{ \pm j \theta}=\cos \theta \pm j \sin \theta$

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees	Radians		$\boldsymbol{\operatorname { s i n } \theta} \boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}$	csc $\boldsymbol{\theta}$
0°	0	0	1	0	Undefined	1	Undefined
30°	$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 3$	$\sqrt{3}$	$2 \sqrt{3} / 3$	2
45°	$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$	$\sqrt{3} / 3$	2	$2 \sqrt{3} / 3$
90°	$\pi / 2$	1	0	Undefined	0	Undefined	1
120°	$2 \pi / 3$	$\sqrt{3} / 2$	$-1 / 2$	$-\sqrt{3}$	$-\sqrt{3} / 3$	-2	$2 \sqrt{3} / 3$
135°	$3 \pi / 4$	$\sqrt{2} / 2$	$-\sqrt{2} / 2$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$5 \pi / 6$	$1 / 2$	$-\sqrt{3} / 2$	$-\sqrt{3} / 3$	$-\sqrt{3}$	$-2 \sqrt{3} / 3$	2
180°	π	0	-1	0	Undefined	$-1 / 2$	Undefined
210°	$7 \pi / 6$	$-1 / 2$	$-\sqrt{3} / 2$	$\sqrt{3} / 3$	$\sqrt{3}$	$-2 \sqrt{3} / 3$	-2
225°	$5 \pi / 4$	$-\sqrt{2} / 2$	$-\sqrt{2} / 2$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$4 \pi / 3$	$-\sqrt{3} / 2$	$-1 / 2$	$\sqrt{3}$	$\sqrt{3} / 3$	-2	$-2 \sqrt{3} / 3$
270°	$3 \pi / 2$	-1	0	Undefined	0	Undefined	-1
300°	$5 \pi / 3$	$-\sqrt{3} / 2$	$1 / 2$	$-\sqrt{3}$	$-\sqrt{3}$	2	$-2 \sqrt{3} / 3$
315°	$7 \pi / 4$	$-\sqrt{2} / 2$	$\sqrt{2} / 2$	-1	-1	$-\sqrt{2}$	-2
330°	$11 \pi / 6$	$-1 / 2$	$\sqrt{3} / 2$	$-\sqrt{3} / 3$	$-\sqrt{3}$	$2 \sqrt{3} / 3$	1
360°	2π	0	1	0	Undefined	-2	Undefined

2.1.4 Graphs of f and f^{-1}

Inverse Functions

The inverse of a function f is denoted by f^{-1}. The inverse reverses the original function.
Hence, if $f(\mathrm{a})=\mathrm{b}$ then $f^{-1}(\mathrm{~b})=\mathrm{a}$
Note: $f^{-1}(\mathrm{x})$ does not mean $1 / f(x)$.

One to one Functions

If a function is to have an inverse which is also a function then it must be one to one.
This means that a horizontal line will never cut the graph more than once. i.e we cannot have $f(\mathrm{a})=f(\mathrm{~b})$ if $\mathrm{a} \neq \mathrm{b}$,

Two different inputs (x values) are not allowed to give the same output (y value).
For instance $f(-2)=f(2)=4$
$y=f(x)=x^{2}$ with domain $\mathrm{x} \in \mathfrak{R}$ is not one to one.

Drawing the graph of the Inverse

The graph of $y=f^{-1}(x)$ is the reflection in the line $y=x$ of the graph of $y=f(x)$.
Example: Find the inverse of the function $y=f(x)=(x-2)^{2}+3, x \geq 2$
Sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same axes showing the relationship between them.

Domain:

This is the function we considered earlier except that its domain has been restricted to $x \geq 2$ in order to make it one-to-one. We know that the Range of f is $y \geq 3$ and so the domain of f^{-1} will be $x \geq 3$.

Rule:

Swap x and y to get $x=(y-2)^{2}+3$. Now make y the main subject:

$$
\begin{gathered}
x-3=(y-2)^{2} \\
\sqrt{ }(x-3)=y-2 \\
y=2+\sqrt{ }(x-3)
\end{gathered}
$$

Hence, the final answer is: $f^{-1}(x)=2+\sqrt{ }(x-3), x \geq 3$

Graphs

Reflect in $y=x$ to get the graph of the inverse function.

Note:

Remember with inverse functions everything swaps over. Input and output (x and y) swap over
Domain and Range swap over
Reflecting in $\mathrm{y}=\mathrm{x}$ swaps over the coordinates of a point so (a, b) on one graph becomes (b, a) on the other.

```
Note: we could also have
-\sqrt{}{(x - 3) = y-2}
and y=2-\sqrt{}{(x-3)}
But this would not fit our function as \(y\) must be greater than 2 (see graph)
```

2.2.1 Definition of Hyperbolic Functions

* Hyperbolic Sine, pronounced "shine".

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

perbolic Cosine, pronounced "cosh".

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

* Hyperbolic Tangent, pronounced "tanh".
$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \equiv \frac{e^{2 x}-1}{e^{2 x}+1}$
* Hyperbolic Secant, pronounced "shek".

$$
\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}
$$

* Hyperbolic Cosecant, pronounced "coshek".

$$
\operatorname{cosech} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}
$$

* Hyperbolic Cotangent, pronounced "coth".

$$
\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
$$

2.2.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the values of e^{x} and e^{-x}, its graphs is a combination of the exponential graphs.
(i) Graph of $\sinh x$

From the graph, we see
(i) $\quad \sinh 0=0$.
(ii) The domain is all real numbers
(iii) The curve is symmetrical about the origin, i.e.
$\sinh (-x)=-\sinh x$
(ii) Graph of $\cosh x$

(i) $\cosh 0=1$
(ii) The domain is all real numbers.
(iii) The value of $\cosh x$ is never less than 1.
(iv) The curve is symmetrical about the y-axis, i.e. $\cosh (-x)=\cosh x$
(v) For any given value of $\cosh x$, there are two values of x.
(iii) Graph of $\tanh x$

We see
(i) $\quad \tanh 0=0$
(ii) $\quad \tanh x$ always lies between $y=-1$ and $y=1$.
(iii) $\tanh (-x)=-\tanh x$
(iv) It has horizontal asymptotes $y= \pm 1$.

2.2.3 Hyperbolic Identities

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed by hyperbolic functions.

1. $\cosh ^{2} x-\sinh ^{2} x=1$
2. $1-\tanh ^{2} x=\operatorname{sech}^{2} x$
3. $\operatorname{coth}^{2} x-1=\operatorname{cosech}^{2} x$
4. $\quad \sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$
5. $\quad \cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
6. $\quad \tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
7. $\sinh 2 x=2 \sinh x \cosh x$
8. $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1=2 \sinh ^{2} x+1$
9. $\tanh 2 x=\frac{2 \tanh x}{1+\tanh ^{2} x}$

Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in sign.

Trig. Identities
Hyperbolic Identities

$\begin{aligned} \sec \theta & \equiv \frac{1}{\cos \theta} \\ \operatorname{cosec} \theta & \equiv \frac{1}{\sin \theta} \\ \cot \theta & \equiv \frac{1}{\tan \theta} \end{aligned}$	$\begin{aligned} & \operatorname{sech} \theta=\frac{1}{\cosh \theta} \\ & \operatorname{cosech} \theta=\frac{1}{\sinh \theta} \\ & \operatorname{coth} \theta=\frac{1}{\tanh \theta} \end{aligned}$
$\begin{gathered} \cos ^{2} \theta+\sin ^{2} \theta \equiv 1 \\ 1+\tan ^{2} \theta \equiv \sec ^{2} \theta \\ 1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta \end{gathered}$	$\begin{aligned} & \cosh ^{2} \theta-\sinh ^{2} \theta \equiv 1 \\ & 1-\tanh ^{2} \theta \equiv \operatorname{sech}^{2} \theta \\ & \operatorname{coth}^{2} \theta-1 \equiv \operatorname{cosech}^{2} \theta \end{aligned}$
$\begin{gathered} \sin 2 A \equiv 2 \sin A \cos A \\ \cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \\ \equiv 1-2 \sin ^{2} A \\ \equiv 2 \cos ^{2} A-1 \end{gathered}$	$\begin{aligned} \sinh 2 A & \equiv 2 \sinh A \cosh A \\ \cosh 2 A & \equiv \cosh ^{2} A+\sinh ^{2} A \\ & \equiv 1+2 \sinh ^{2} A \\ & \equiv 2 \cosh ^{2} A-1 \end{aligned}$

Examples 2.1

1. Sketch the graph of the following functions. State the domain and range.
a) $y=\sinh x+2$
b) $y=2 \tanh 3 x$
2. By using definition of hyperbolic functions,
a) Evaluate $\sinh (-4)$ and $\cosh (\ln 2)$ to four decimal places.
b) Show that $2 \cosh ^{2} x-1=\cosh 2 x$
c) Show that $\cosh ^{2} x-\sinh ^{2} x=1$
3. By using identities of hyperbolic functions, show that

$$
\frac{1-\tanh ^{2} x}{1+\tanh ^{2} x}=\operatorname{sech} 2 x
$$

4. Solve the following for x, giving your answer in 4 dcp .
a) $2 \cosh x-\sinh x=2$
b) $\cosh 2 x-\sinh x=1$

2.3 Inverse Functions

Definition 2.3 (Inverse Functions)
If $f: X \rightarrow Y$ is a one-to-one function with the domain \boldsymbol{X} and the range \boldsymbol{Y}, then there exists an inverse function,

$$
f^{-1}: Y \rightarrow X
$$

where the domain is Y and the range is X such that

$$
y=f(x) \Leftrightarrow x=f^{-1}(y)
$$

Thus, $f^{-1}(f(x))=x$ for all values of x in the domain f.
Note:
The graph of inverse function is reflections about the line $y=x$ of the corresponding noninverse function.

2.3.1 Inverse Trigonometric Functions

Trigonometric functions are periodic hence they are not one-to one. However, if we restrict the domain to a chosen interval, then the restricted function is one-to-one and invertible.
(i) Inverse Sine Function

Look at the graph of $y=\sin x$ shown below

The function $f(x)=\sin x$ is not one to one. But if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $f(x)$ is one to one.

The inverse sine function is defined
as $y=\sin ^{-1} x \Leftrightarrow x=\sin y$
where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ and $-1 \leq x \leq 1$.

The graph of $y=\sin ^{-1} x$ is shown below

ii) Inverse Cosine Function

Look at the graph of $y=\cos x$ shown below

The function $f(x)=\cos x$ is not one to one. But if the domain is restricted to $[0, \pi]$, then $f(x)$ is one to one.

The inverse cosine function is defined as
$y=\cos ^{-1} x \Leftrightarrow x=\cos y$
where $0 \leq y \leq \pi$ and $-1 \leq x \leq 1$.

The graph of $y=\cos ^{-1} x$ is shown below

(iii) Inverse Tangent Function

Look at the graph of $y=\tan x$ shown below

The function $f(x)=\tan x$ is not one to one. But if the domain is restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then $f(x)$ is one to one.

The inverse tangent function is defined as $y=\tan ^{-1} x \Leftrightarrow x=\tan y$
where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ and $-\infty \leq x \leq \infty$.

The graph of $y=\tan ^{-1} x$ is shown below

(iv) Inverse Cotangent Function

Domain:
Range:

(vi) Inverse Cosecant Function

Domain:

Range:

Table of Inverse Trigonometric Functions

Functions	Domain	Range
$y=\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$y=\csc ^{-1} x$	$\|x\| \geq 1$	$\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$
$y=\sec ^{-1} x$	$\|x\| \geq 1$	$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
$y=\cot ^{-1} x$	$(-\infty, \infty)$	$(0, \pi)$

$>\sin ^{-1} x \neq \frac{1}{\sin x}$ whereas $(\sin x)^{-1}=\frac{1}{\sin x}$.

2.3.2 Inverse Trigonometric Identities

The definition of the inverse functions yields several formulas.
Inversion formulas

$\sin \left(\sin ^{-1} x\right)=x$	for $-1 \leq x \leq 1$	$\sin ^{-1}(\sin y)=y$	for $-90^{\circ} \leq y \leq 90^{\circ}$
$\cos \left(\cos ^{-1} x\right)=x$	for $-1 \leq x \leq 1$	$\cos ^{-1}(\cos y)=y$	for $0^{\circ} \leq y \leq 180^{\circ}$
$\tan \left(\tan ^{-1} x\right)=x$	for all x	$\tan ^{-1}(\tan y)=y$	for $-90^{\circ} \leq y \leq 90^{\circ}$

$>$ These formulas are valid only on the specified domain

Basic Relation

Reciprocal Identities

$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$	for $0 \leq x \leq 1$	$\csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)$	for $\|x\| \geq 1$
$\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$	for $0 \leq x \leq 1$	$\sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right)$	for $\|x\| \geq 1$
$\sec ^{-1} x+\csc ^{-1} x=\frac{\pi}{2}$	for $0 \leq x \leq 1$	$\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)$	for all x

Negative Argument Formulas

$\sin ^{-1}(-x)=-\sin ^{-1} x$	$\sec ^{-1}(-x)=\pi-\sec ^{-1} x$	$\cos ^{-1}(-x)=\pi-\cos ^{-1} x$

Examples 2.2:

1.Evaluate the given functions.
(i) $\sin \left(\sin ^{-1} 0.5\right) \quad$ (ii) $\sin \left(\sin ^{-1} 3\right)$ (iii) $\sin ^{-1}\left(\sin 45^{\circ}\right)$ (iv) $\sin ^{-1}\left(\sin 135^{\circ}\right)$
2. Evaluate the given functions.
(i) $\operatorname{arcsec}(-2)$
(ii) $\csc ^{-1}(\sqrt{2})$
(iii) $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
3. Show that
(i) $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
(ii) $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$
(iii) $\sin ^{-1}(-x)=-\sin ^{-1} x$
4. Given that $2 \sin ^{-1} x+\sin ^{-1} 2 x=\frac{\pi}{2}$, find the value of x.

OPENCOURSEWARE

2.3.3 Inverse Hyperbolic Functions

The three basic inverse hyperbolic functions are $\sinh ^{-1} x, \cosh ^{-1} x$, and $\tanh ^{-1} x$.

Definition (Inverse Hyperbolic Function)

$$
\begin{aligned}
& y=\sinh ^{-1} x \Leftrightarrow x=\sinh y \quad \text { for all } x \text { and } y \in \mathfrak{R} \\
& y=\cosh ^{-1} x \Leftrightarrow x=\cosh y \text { for } x \geq 1 \text { and } y \geq 0 \\
& y=\tanh ^{-1} x \Leftrightarrow x=\tanh y \text { for }-1 \leq x \leq 1, y \in \mathfrak{R}
\end{aligned}
$$

Graphs of Inverse Hyperbolic Functions

(ii) $y=\cosh ^{-1} x$

Domain:
Range:

(iii) $y=\tanh ^{-1} x$
Domain:
Range:

EY NC \leq n
2.3.4 Log Form of the Inverse Hyperbolic Functions

It may be shown that
(a) $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
(b) $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
(c) $\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
(d) $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)$
(e) $\sec ^{-1} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$
(f) $\operatorname{cosech}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right)$

Inverse Hyperbolic Cosine (Proof)

If we let $y=\cosh ^{-1} x$, then $x=\cosh y=\frac{e^{y}+e^{-y}}{2}$
Hence, $2 x=e^{y}+e^{-y}$
On rearrangement, $\left(e^{y}\right)^{2}-2 x e^{y}+1=0$
Hence, (using formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$),

$$
e^{y}=\frac{2 x \pm \sqrt{4 x^{2}-4}}{2}=x \pm \sqrt{x^{2}-1}
$$

Since $e^{y}>0$,

$$
\therefore e^{y}=x+\sqrt{x^{2}-1}
$$

Taking natural logarithms,

$$
y=\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)
$$

Proof for $\sinh ^{-1} x$

$y=\sinh ^{-1} x$, then $x=\sinh y=\frac{e^{y}-e^{-y}}{2}$
$\therefore 2 x=e^{y}-e^{-y}$ (multiply with e^{y})
On rearrangement: $\quad 2 x e^{y}=e^{2 y}-1$
$e^{2 y}-2 x e^{y}-1=0$
$e^{y}=x \pm \sqrt{x^{2}+1}$
Since $e^{y}>0$,

$$
\therefore e^{y}=x+\sqrt{x^{2}+1}
$$

Taking natural logarithms,

$$
y=\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

In the same way, we can find the expression for $\tanh ^{-1} x$ in logarithmic for

Examples 2.3:

1. Prove that $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
2. Evaluate
a) $\sinh ^{-1}(0.5)$
b) $\cosh ^{-1}(0.5)$ c) $\tanh ^{-1}(-0.6)$
3. Solve the following equations:
a) $\sinh ^{-1} x=\ln 2$
b) $\cosh ^{-1} 5 x=\sinh ^{-1} 4 x$

2.4 References

1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series). AddisonWesley Longman Publishing Co., Inc., Boston, MA, USA.
2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. Engineering mathematics I, Penerbit UTM, 2012.
