

Chapter 5 Fundamentals of FTIR Spectroscopy

Course Code: SSCP 4473

Course Name: Spectroscopy & Materials Analysis

Sib Krishna Ghoshal (PhD)

Advanced Optical Materials Research Group Physics Department, Faculty of Science, UTM

Innovative.Entrepreneurial.Global

- Used for qualitative identification of organic and inorganic compounds
- ✓ Used for checking the presence of functional groups in molecules
- Can also be used for quantitative measurements of compounds
- ✓ Each compound has its unique IR absorption pattern
- ✓ Wavenumber with units of cm⁻¹ is commonly used
- Wavenumber = number of waves of radiation per centimeter

✓ The IR region has lower energy than visible radiation and higher energy the MCT detector

- ✓ Molecules with covalent bonds absorb IR radiation
- ✓ Absorption is quantized
- Molecules move to a higher energy state (Rotational & Vibrational)
- IR radiation is sufficient enough to cause rotation and vibration
- \checkmark Radiation between 1 and 100 μm will cause excitation to higher vibrational states
- ✓ Radiation higher than 100 µm will cause excitation to higher rotational states

- Absorption spectrum is composed of broad vibrational absorption bands
- ✓ Molecules absorb radiation when a bond in the molecule vibrates at the same frequency as the incident radiant energy
- ✓ Molecules vibrate at higher amplitude after absorption
- A molecule must have a change in dipole moment during vibration in order to absorb IR radiation

OPENCOURSEWARE IR Absorption by Molecules

Absorption frequency depends on

- ✓ Masses of atoms in the bonds
- ✓ Geometry of the molecule
- ✓ Strength of bond
- ✓ Other contributing factors

Dipole Moment (µ)

 $\mu = \mathbf{Q} \times \mathbf{r}$

Q = charge and r = distance between charges

- ✓ Asymmetrical distribution of electrons in a bond renders the bond polar
- ✓ A result of electro-negativity difference
- \checkmark μ changes upon vibration due to changes in r
- ✓ Change in µ with time is necessary for a molecule to absorb IR radiation

Dipole Moment (µ)

- ✓ The repetitive changes in µ makes it possible for polar molecules to absorb IR radiation
- ✓ Symmetrical molecules do not absorb IR radiation since they do not have dipole moment (O₂, F₂, H₂, Cl₂)
- ✓ Diatomic molecules with dipole moment are IR-active (HCl, HF, CO, HI)
- ✓ Molecules with more than two atoms may or may not be IR active depending on whether they have permanent net dipole moment

OPENCOURSEWARE Principal Modes of Vibration

Stretching

✓ Change in bond length resulting from change in Interatomic distance (r)

Two stretching modes

- ✓ Symmetrical and asymmetrical stretching
- \checkmark Symmetrical stretching is IR-inactive (no change in $\mu)$

Bending

✓ Change in bond angle or change in the position of a group of atoms with respect to the rest of the molecule

Bending Modes

- ✓ Scissoring and Rocking
- ✓ In-plane bending modes (atoms remain in the same plane)
- ✓ Wagging and Twisting
- ✓ Out-of-plane (oop) bending modes (atoms move out of plane)

Modes of Vibration

Radiation in the Mid IR region will cause *stretching and bending vibrations of the bonds* in most covalent molecules.

Innovative.Entrepreneurial.Global

OPENCOURSEWARE Principal Modes of Vibration

3N-6 possible normal modes of vibration

N = number of atoms in a molecule

Degrees of freedom = 3N

H₂O for example

- ✓ 3 atoms
- ✓ Degrees of freedom = $3 \times 3 = 9$
- ✓ Normal modes of vibration = 9-6 = 3

OPENCOURSEWAREPrincipal Modes of Vibration

Linear Molecules

- \checkmark Cannot rotate about the bond axis
- ✓ Only 2 degrees of freedom describe rotation
- \checkmark 3N-5 possible normal modes of vibration
- **CO₂ for example**
- 3 atoms
- Normal modes of vibration = 9-5 = 4

Transitions

Fundamental

- ✓ Excitation from the ground state V_0 to the first excited state V_1
- ✓ The most likely transition and have strong absorption bands

OPENCOURSEWAR Fundamental Transitions

- ✓ Excitation from ground state to higher energy states V₂, V₃,
- ✓ Result in overtone bands that are weaker than fundamental
- ✓ Frequencies are integral multiples of fundamental absorption
- ✓ Fewer peaks are seen than predicted on spectra due to IR-inactive vibrations, degenerate vibrations, weak vibrations

✓ Additional peaks may be seen due to overtones

Vibrational Motion

✓ Consider a bond as a spring $\tilde{v} = \frac{1}{2\pi c} \sqrt{\frac{f}{\mu}}$

c = speed of light (cm/s)

- f = force constant (dyne/cm; proportional to bond strength)
- f for a double bond = 2f for a single bond
- f for a triple bond = 3f for a single bond

$$\mu = \text{Reducedmass}(\text{in gm}) = \frac{M_1 M_2}{M_1 + M_2}$$

✓ M₁ and M₂ are masses of vibrating atoms connecting the bond Innovative.Entrepreneurial.Global

Instrumentation

Components

✓ Radiation source

OPENCOURSEWARE

- ✓ Sample holder
- ✓ Monochromator
- ✓ Detector
- ✓ Computer

- Salt prisms and metal gratings are used as dispersion devices
- ✓ Mirrors made of metal with polished front surface
- ✓ Spectrum is recorded by moving prism or grating such that different radiation frequencies pass through the exit slit to the detector
- ✓ Spectrum obtained is %T verses wave-number (or frequency)

FT Spectrometers

- ✓ Based on Michelson interferometer
- ✓ Employs constructive and destructive interferences
- ✓ Destructive interference is a maximum when two beams are 180° out of phase
- ✓ An FT is used to convert the time-domain spectrum obtained into a frequency-domain spectrum
- ✓ The system is called FTIR

✓ Sample holder must be transparent to IR- salts

- ✓ Liquids
 - ✓ Salt Plates
 - ✓ Neat, 1 drop
 - \checkmark Samples dissolved in volatile solvents- 0.1-10%
- ✓ Solids
 - ✓ KBr pellets
 - ✓ Mulling (dispersions)

✓ Quantitative analysis-sealed cell with NaCl/NaBr/KBr windows

Advantages of FT Spectrometers

✓ Has higher signal-to-noise ratio

OPENCOURSEWARE

 More accurate and precise than dispersive monochromators (Conne's advantage)

 ✓ Much greater radiation intensity falls on the detector due to the absence of slits (throughput or Jacquinot's advantage)

Selectivity

✓ Offers much more selectivity than UV-vis spectroscopy

OPENCOURSEWARE

- ✓ Absorption peaks are narrow in comparison and the energies of the absorption bands are unique for sets of functional groups
- \checkmark Thus, qualitative information is readily obtained from IR spectra
- ✓ Correlation charts and compilations of IR spectra for unknown matching
- ✓ But IR spectra do not have the specificity that NMR spectra or electron impact mass spectra tend to exhibit

- ✓ This is perhaps the major shortcoming of this technique when compared to fluorescence, or especially mass spectrometry
- ✓ However, Beer's law type analysis are possible and fairly routine using FT-IR
- ✓ Detection limits are in the ppm range (mM)

Near-IR (NIR) Spectroscopy

- ✓ Region covers 750 nm 2500 nm (13000 cm⁻¹ 4000 cm⁻¹)
- ✓ Long wavelength end of IR region

OPENCOURSEWARE

- ✓ Bands occurring in this region are due to OH, NH, and CH bonds
- Bands are primarily overtone and combination bands
- ✓ Light source is tungsten-halogen lamp
- \checkmark Detector is lead sulfide photo-detector
- ✓ Quartz or fused silica sample cells with long path lengths are used

Near-IR (NIR) Spectroscopy

Primary absorption bands seen in NIR

C–H Bands 2100 – 2450 nm and 1600 – 1800 nm

N–H Bands 1450 – 1550 nm and 2800 – 3000 nm

<mark>O–H Bands</mark> 1390 – 1450 nm and 2700 – 2900 nm

Near-IR (NIR) Spectroscopy

- ✓ Used for quantitative analysis of solid and liquid samples containing OH, NH, CH bonds
- ✓ For quantitative characterization of polymers, food, proteins, agricultural products
- ✓ Pharmaceutical tablets can be analyzed nondestructively
- ✓ Forensic analysis of unknown wrapped powders believed to be rugs are analyzed without destroying the wrappers

Applications of IR Spectroscopy

Quantitative

- ✓ Extent of absorption and Beer's law can be used to determine concentration of unknown analytes in sample
- ✓ Absorption band unique to the analyte molecule should be used for measurements
- \checkmark Generally performed with samples in solutions
- ✓ Light scattering may occur with pellets which deviates from Beer's law

Applications of IR Spectroscopy

Quantitative

- Measure absorption intensities of standard solutions and unknown at exactly the same wavenumber
- ✓ All measurements must be made from the same baseline
- ✓ Plot a calibration curve
- ✓ Use the relationship obtained to determine the concentration of unknown
- ✓ Not as accurate as using UV-VIS spectroscopy

Applications of IR Spectroscopy

Quantitative

✓ Determination of impurities in raw materials (quality control)

✓ Analysis of contaminations from oil or grease

✓ Determination of reaction rates of slow reactions

Applications of IR Spectroscopy

Qualitative

✓ Identification of unknown samples by matching the absorption spectra with that of known compounds

 ✓ Identification of functional groups present in a sample (classification of unknowns)

Predicting Unknown Structure

- ✓ Identify the major functional groups from the strong absorption peaks
- ✓ Identify the compound as aromatic or aliphatic
- ✓ Subtract the FW of all functional groups identified from the given molecular weight of the compound
- ✓ Look for C≡C and C=C stretching bands

OPENCOURSEWARE

- ✓ Look for other unique CH bands (e.g. aldehyde)
- \checkmark Use the difference obtained to deduce the structure

Functional Group Region

OPENCOURSEWARE

✓ Strong absorptions due to stretching from hydroxyl, amine, carbonyl, CH_x

4000 - 1300 cm⁻¹

Fingerprint Region

Result of interactions between vibrations

1300 – 910 cm⁻¹

Hydrocarbons

OPENCOURSEWARE

- ✓ Absorption bands are due to the stretching or bending of C−H and C−C bonds
- ✓ C−C stretching vibrations are distributed across the fingerprint region (not useful for identification)
- ✓ C−C bending vibrations occur below 500 cm⁻¹(not useful for identification)
- ✓ Observed bands are due to C−H stretching or bending

Cyclic Alkanes

- ✓ No peak around 1375 cm⁻¹ due to absence of methyl groups
- ✓ Two peaks at ~ 900 cm⁻¹ and 860 cm⁻¹ due to ring deformation

Alkenes

- \checkmark Contain many more peaks than alkanes
- ✓ Peaks of interest are due to stretching and bending of C−H and C=C bonds
- ✓ C=C band will not appear if there is symmetrical substitution about the C=C bond

Alkynes

- ✓ C≡C peak appears around 2100 2200 cm⁻¹
- ✓ Terminal alkyne \equiv C−H stretch occurs near 3300 cm⁻¹

Aromatic Hydrocarbons

OPENCOURSEWARE

- ✓ C→H absorption occurs above 3000 cm⁻¹
- ✓ Aromatic C=C ring stretching absorption around 1400
 1600 cm⁻¹ appears as doublet
- ✓ Aromatic C↓H oop band around 690 900 cm⁻¹
- ✓ Overtones around 1660 2000 cm⁻¹

Interpretation of IR Spectra

Alcohols

- ✓ OH band in neat aliphatic alcohols is a broad band centered at ~ 3300 cm⁻¹ due to hydrogen bonding (3100 3600 cm⁻¹)
- ✓ OH band in dilute solutions of aliphatic alcohols is a sharp peak ~ 3600 cm⁻¹
- \checkmark C–C–O stretch ~ 1048 cm⁻¹ for primary alcohols
- ✓ Decreasing frequency by 10 cm⁻¹ in the order $1^{\circ}>2^{\circ}>3^{\circ}$
- ✓ Methyl bending vibrations at ~ 1200 1500 cm⁻¹

Phenol

✓ CO→H stretch is broad band

OPENCOURSEWARE

- ✓ C→H stretch ~ 3050 cm^{-1}
- ✓ C−C→O band ~ 1225 cm⁻¹
- ✓ C –O–H bend ~ 1350 cm⁻¹
- ✓ Aromatic ring C stretching between 1450 1600 cm⁻¹
- ✓ Monosubstituted bands ~ 745 895 cm⁻¹ and 1650 2000 cm⁻¹

Aliphatic Acids

✓ Broad OH band around 2900 cm⁻¹

OPENCOURSEWARE

- ✓ C−H stretching bands from CH₃ and CH₂ stick out at the bottom of the broad OH band
- \checkmark C=O stretch ~ 1710 cm⁻¹
- ✓ In-plane C -O-H bend ~ 1410 cm⁻¹ and oop C -O-H bend ~ 930 cm⁻¹
- \checkmark C –C–O stretch dimer at ~ 1280 cm⁻¹

Carboxylic Acids, Esters, Ketones, Aldehydes

OPENCOURSEWARE

- ✓ Characterized by very strong carbonyl (C=O) stretching band between 1650 cm⁻¹ and 1850 cm⁻¹
- ✓ Fermi resonance seen in aldehydes(doublet due to resonance with an overtone of the aldehydic C−H bend at 1390 cm⁻¹)

Nitrogen-Containing Compounds

- ✓ 1° amines (NH₂) have scissoring mode and low frequency wagging mode
- ✓ 2° amines (NH) only have wagging mode (cannot scissor)
- ✓ 3° amines have no NH band and are characterized by C−N stretching modes ~ 1000 - 1200 cm⁻¹ and 700 -900 cm⁻¹
- ✓ 1°, 2°, 3° amides are similar to their amine counterparts but have additional C=O stretching band

Nitrogen-Containing Compounds

OPENCOURSEWARE

- ✓ C=O stretching called amide I in 1° and 2° amides and amide II in 3° amides
- ✓ N−H stretch doublet ~ 3370 3291 cm⁻¹ for 1° amines
- ✓ 1° N−H bend at ~ 1610 cm⁻¹ and 800 cm⁻¹
- ✓ Single N−H stretch ~ 3293 cm⁻¹ for 2° but absent in 3° amine
- ✓ C−N stretch weak band ~ 1100 cm⁻¹

Amino Acids [RCH(NH₂)COOH]

OPENCOURSEWARE

- ✓ IR spectrum is related to salts of amines and salts of acids
- ✓ Broad CH bands that overlap with each other
- ✓ Broad band ~ 2100 cm⁻¹
- ✓ NH band ~ 1500 cm⁻¹
- ✓ Carboxylate ion stretch ~ 1600 cm⁻¹

Halogenated Compounds

OPENCOURSEWARE

 \checkmark C ${\rightarrow} X$ strong absorption bands in the fingerprint and aromatic regions

✓ More halogens on the same C results in an increase in intensity and a shift to higher wavenumbers

✓ Absorption due to C-Cl and C-Br occurs below 800 cm⁻¹

Limitations of IR Spectroscopy

✓ Short path length

✓ Path length may vary from sample to sample

✓ Sample cells are soluble in water

OPENCOURSEWARE

ocw.utm.my

Innovative.Entrepreneurial.Global

Typical IR Spectra

Innovative.Entrepreneurial.Global

Questions ?

Innovative.Entrepreneurial.Global