

SSCM 1023 MATHEMATICAL METHODS I

POLAR COORDINATES

SHAZIRAWATI MOHD PUZI

&

NORZIEHA MUSTAPHA

DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

ocw.utm.my

POLAR COORDINATES

- 1.1 Parametric Equations
- 1.2 Polar coordinates system
- 1.3 Relationship between Cartesian and Polar Coordinates
- 1.4 Forming polar equations from Cartesian equations and vice-versa
- 1.5 Sketching polar equations
- 1.6 Finding the intersection points between two curves in Polar Coordinates
- 1.7 References

ocw.utm.my

1.1 Parametric Equations

1.1.1 Definition:

Equations x = f(t), y = g(t) that express x and y in t is known as **parametric equations**, and t is called the **parameter**.

How the parameter may be eliminated from the parametric equations to obtain the Cartesian equations?

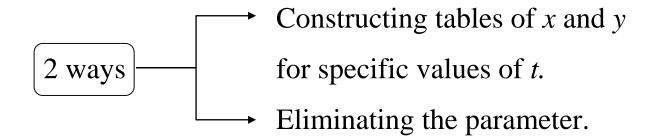
- no specific method
- use algebraic manipulation

Example 1: Form Cartesian equations by eliminating parameter *t* in the following equations:

(a)
$$x = 2t$$
, $y = 4t^2 - 1$
(b) $x = 4 \sin t$, $y = 2\cos^2 t$
(c) $x = e^t$, $y = e^{-t}$
(d) $x = t^3$, $y = 3\ln t$

ocw.utm.mv

1.1.2 Curve Sketching of Parametric Equations



Example 2:

Sketch the graph of the following equations

(a)
$$x = 2t$$
, $y = 4t^2 - 1$
(b) $x = 3t - 5$, $y = 2t + 5$

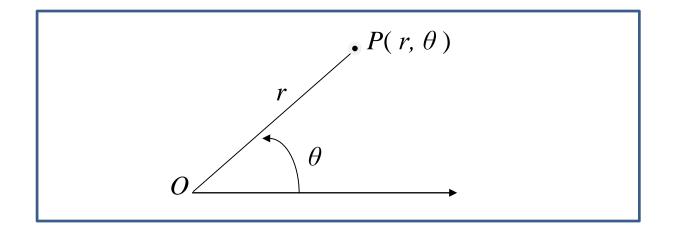
ocw.utm.my

1.2 Polar Coordinates System

Definition:

The polar coordinates of point P is written as an ordered pair (r, θ) , that is $P(r, \theta)$ where

- r distance from origin to P
- θ angle from polar axis to the line *OP*



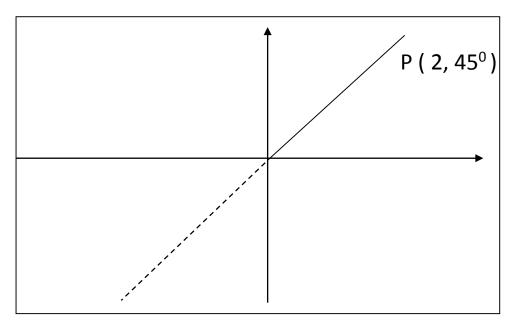
Note:

- (i) θ is positive in anticlockwise direction, and it is negative in clockwise direction.
- (ii) Polar coordinate of a point is not unique.
- (iii) A point $(-r, \theta)$ is in the opposite direction of point (r, θ) .

Example 3: Plot the following set of points in the same diagram:

(a)
$$(3,225^{\circ})$$
, $(1,225^{\circ})$, $(-3,225^{\circ})$
(b) $\left(2,\frac{\pi}{3}\right)$, $\left(2,-\frac{\pi}{3}\right)$, $\left(-2,\frac{\pi}{3}\right)$

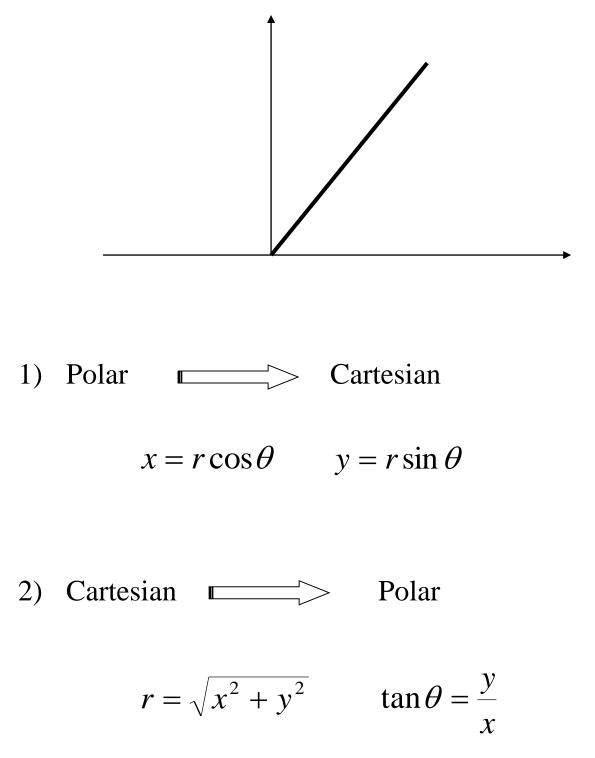
For every point $P(r,\theta)$ in $0 \le \theta \le 2\pi$, there exist 3 more coordinates that represent the point *P*.



Example 4:

Find all possible polar coordinates of the points whose polar coordinates are given as the following: (a) $P(1,45^{\circ})$ (b) $Q(2,-60^{\circ})$ (c) $R(-1,225^{\circ})$

1.3 Relationship between Cartesian and Polar Coordinates



Example 5: Find the Cartesian coordinates of the points whose polar coordinates are given as

(a)
$$\left(1, \frac{7\pi}{4}\right)$$
 (b) $\left(-4, \frac{2\pi}{3}\right)$ (c) $\left(2, -30^{\circ}\right)$

Example 6: Find all polar coordinates of the points whose rectangular coordinates are given as

(a) (11,5) (b) (0,2) (c) (-4,-4)

ocw.utm.my

OPENCOURSEWARE

1.4 Forming polar equations from Cartesian equations and vice-versa.

To change the equation in Cartesian coordinates to polar coordinates, and conversely, use equation

$$x = r \cos \theta$$
 $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$

Example 7: Express the following rectangular equations in polar equations.

(a)
$$y = x^2$$
 (b) $x^2 + y^2 = 16$ (c) $xy = 1$

Example 8: Express the following polar equations in rectangular equations and sketch the graph.

(a)
$$r = 2\sin\theta$$

(b) $r = \frac{3}{4\cos\theta + 5\sin\theta}$
(c) $r = 4\cos\theta + 4\sin\theta$
(d) $r = \tan\theta\sec\theta$
(e) $r^2 = \frac{2}{3\cos^2\theta - 1}$

1.5 Graph Sketching of Polar Equations

- There are two methods to sketch a graph of $r = f(\theta)$
- (1) Form a table for *r* and θ . $(0 \le \theta \le 2\pi)$.

From the table, plot the (r, θ) points.

(2) Symmetry test of the polar equation.

The polar equations is symmetrical about:

(a) *x*-axis if $(r, -\theta) = f(\theta)$ or $(-r, \pi - \theta) = f(\theta)$.

- consider θ in range [0, 180⁰] only.

(b) y-axis if $(r, \pi - \theta) = f(\theta)$ or $(-r, -\theta) = f(\theta)$.

- consider θ in range [0, 90⁰] and [270⁰, 360⁰]

(c) origin if
$$(r, \pi + \theta) = f(\theta)$$
 or $(-r, \theta) = f(\theta)$.

- consider θ in range [0, 180⁰] or [180⁰, 360⁰]
* if symmetry at all, consider θ in range [0, 90⁰]
only.

Example 9: Sketch the graph of $r = 2 \sin \theta$

Solution: (Method 1)

Here is the complete table

θ	0	30	60	90	120	150	180	210
$\begin{array}{c} r \\ = 2 \mathrm{sin}\theta \end{array}$	0	1.0	1.732	2	1.732	1	0	-1.0

θ	240	270	300	330	360
$r = 2\sin\theta$	-1.732	-2	-1.732	-1	0

Then, plot the points on the diagram:

ocw.utm.my

Symmetrical test for $f(\theta) = 2\sin\theta$

Symmetry	Symmetrical test
About <i>x</i> -axis	
About y-axis	
About origin	

Since *r* is symmetry at *y*-axis, then consider θ in the range [0, 90⁰] **and** [270⁰, 360⁰]

θ	0	30	60	90	270	300	330	360
$\begin{array}{c} r \\ = 2 \mathrm{sin}\theta \end{array}$	0	1.0	1.732	2	-2	-1.732	-1	0

Then, plot the points on the diagram:

ocw.utm.my

OPENCOURSEWARE

Example 10: Sketch the graph of $r = \frac{3}{2} - \cos\theta$

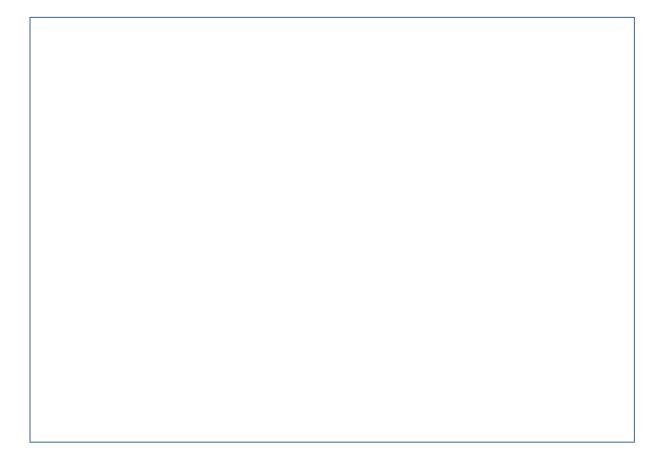
Symmetry	Symmetrical test
About x-axis	
About y-axis	
About origin	

Since *r* symmetry at *x*-axis, consider θ in range

[0, 180⁰] only.

θ	0	30	60	90	120	150	180
$r = \frac{3}{2} - \cos \theta$							

Then, plot the points on the diagram:



Example 11: Sketch the graph of $r = 2\sin^2 \theta$

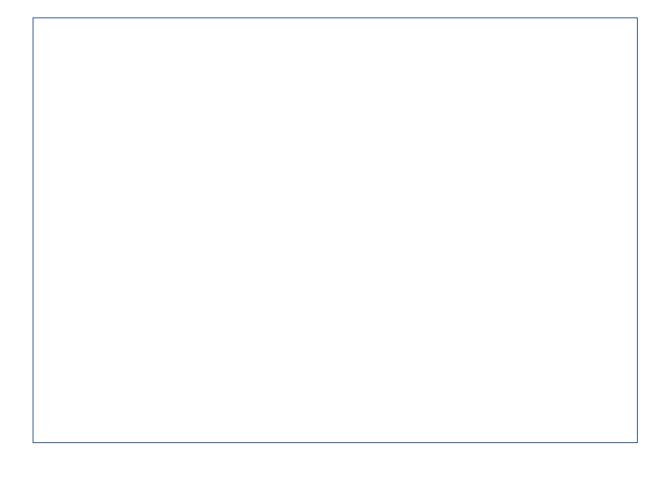
Symmetry	Symmetrical test
About x-axis	
About y-axis	
About origin	

Since *r* symmetry at _____, consider θ in

range _____ only.

θ				
$r = 2\sin^2\theta$				

Then, plot the points on the diagram:



ocw.utm.my

1.6 Finding the Intersection Points between Two Curves In Polar Coordinates

Steps:

- Solve simultaneous equations between 2 curves and determine the intersection points.
 -if one of the curves is a line (i.e. θ = k), we need to find intersection point for θ = k π.
- 2. Check whether the curves intersect at the origin.
 - Test for r = 0. If θ exist, it means the 2 curves intersect at the origin.

Example 12:

Find the points of intersection of the circle $r = 2\cos\theta$ and $r = 2\sin\theta$ for $0 \le \theta \le \pi$

Example 13:

Find the points of intersection of the curves $r = \frac{3}{2} - \cos\theta$

and
$$\theta = \frac{2\pi}{3}$$
.

Example 14:

A polar equation is given as $r = 2 - 5\sin\theta$.

- a) Show that the curve is symmetrical about the *y*-axis and passes through the origin.
- b) Make a suitable graph for $-90^{\circ} \le \theta \le 90^{\circ}$. Use the table and the information in part a) to make a full sketch of the graph.
- c) Find the intersection points of the graph and the straight line $\theta = \frac{11\pi}{12}$

ocw.utm.mv

1.7 References

- 1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. *Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series)*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- 2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. *Engineering mathematics I*, Penerbit UTM, 2012.

ocw.utm.my