# SSCM 1023 MATHEMATICAL METHODS I 

## POLAR COORDINATES

SHAZIRAWATI MOHD PUZI \&

NORZIEHA MUSTAPHA

DEPARTMENT OF MATHEMATICAL SCIENCES, UTM JB

## POLAR COORDINATES

1.1 Parametric Equations
1.2 Polar coordinates system
1.3 Relationship between Cartesian and Polar Coordinates
1.4 Forming polar equations from Cartesian equations and vice-versa
1.5 Sketching polar equations
1.6 Finding the intersection points between two curves in Polar Coordinates
1.7 References

### 1.1 Parametric Equations

### 1.1.1 Definition:

Equations $\quad x=f(t), y=g(t)$ that express $x$ and $y$ in $t$ is known as parametric equations, and $t$ is called the parameter.

How the parameter may be eliminated from the parametric equations to obtain the Cartesian equations?

- no specific method
- use algebraic manipulation

Example 1: Form Cartesian equations by eliminating parameter $t$ in the following equations:
(a) $x=2 t, y=4 t^{2}-1$
(b) $x=4 \sin t, y=2 \cos ^{2} t$
(c) $x=e^{t}, y=e^{-t}$
(d) $x=t^{3}, y=3 \ln t$

### 1.1.2 Curve Sketching of Parametric Equations



Example 2:
Sketch the graph of the following equations
(a) $x=2 t, y=4 t^{2}-1$
(b) $x=3 t-5, y=2 t+5$

### 1.2 Polar Coordinates System

## Definition:

The polar coordinates of point $P$ is written as an ordered pair $(r, \theta)$, that is $P(r, \theta)$ where
$r \quad-\quad$ distance from origin to $P$
$\theta$ - angle from polar axis to the line $O P$


Note:
(i) $\quad \theta$ is positive in anticlockwise direction, and it is negative in clockwise direction.
(ii) Polar coordinate of a point is not unique.
(iii) A point $(-r, \theta)$ is in the opposite direction of point $(r, \theta)$.

Example 3: Plot the following set of points in the same diagram:
(a) $\left(3,225^{\circ}\right),\left(1,225^{\circ}\right),\left(-3,225^{\circ}\right)$
(b) $\left(2, \frac{\pi}{3}\right), \quad\left(2,-\frac{\pi}{3}\right), \quad\left(-2, \frac{\pi}{3}\right)$

For every point $P(r, \theta)$ in $0 \leq \theta \leq 2 \pi$, there exist 3 more coordinates that represent the point $P$.


## Example 4:

Find all possible polar coordinates of the points whose polar coordinates are given as the following:
(a) $P\left(1,45^{\circ}\right)$
(b) $Q\left(2,-60^{\circ}\right)$
(c) $R\left(-1,225^{\circ}\right)$

### 1.3 Relationship between Cartesian and Polar Coordinates



1) Polar $\Perp$ Cartesian

$$
x=r \cos \theta \quad y=r \sin \theta
$$

2) Cartesian


Polar

$$
r=\sqrt{x^{2}+y^{2}}
$$

$\tan \theta=\frac{y}{x}$

Example 5: Find the Cartesian coordinates of the points whose polar coordinates are given as
(a) $\left(1, \frac{7 \pi}{4}\right)$
(b) $\left(-4, \frac{2 \pi}{3}\right)$
(c) $\left(2,-30^{\circ}\right)$

Example 6: Find all polar coordinates of the points whose rectangular coordinates are given as
(a) $(11,5)$
(b) $(0,2)$
(c) $(-4,-4)$

### 1.4 Forming polar equations from Cartesian equations and vice-versa.

To change the equation in Cartesian coordinates to polar coordinates, and conversely, use equation

$$
x=r \cos \theta \quad y=r \sin \theta \quad r=\sqrt{x^{2}+y^{2}}
$$

Example 7: Express the following rectangular equations in polar equations.
(a) $y=x^{2}$
(b) $x^{2}+y^{2}=16$
(c) $x y=1$

Example 8: Express the following polar equations in rectangular equations and sketch the graph.
(a) $r=2 \sin \theta$
(b) $r=\frac{3}{4 \cos \theta+5 \sin \theta}$
(c) $r=4 \cos \theta+4 \sin \theta$
(d) $r=\tan \theta \sec \theta$
e) $r^{2}=\frac{2}{3 \cos ^{2} \theta-1}$

### 1.5 Graph Sketching of Polar Equations

There are two methods to sketch a graph of $r=f(\theta)$
(1) Form a table for $r$ and $\theta . \quad(0 \leq \theta \leq 2 \pi)$.

From the table, plot the $(r, \theta)$ points.
(2) Symmetry test of the polar equation.

The polar equations is symmetrical about:
(a) $x$-axis if $(r,-\theta)=f(\theta)$ or $(-r, \pi-\theta)=f(\theta)$.

- consider $\theta$ in range $\left[0,180^{\circ}\right]$ only.
(b) $y$-axis if $(r, \pi-\theta)=f(\theta)$ or $(-r,-\theta)=f(\theta)$.
- consider $\theta$ in range $\left[0,90^{\circ}\right]$ and $\left[270^{\circ}, 360^{\circ}\right]$
(c) origin if $(r, \pi+\theta)=f(\theta)$ or $(-r, \theta)=f(\theta)$.
- consider $\theta$ in range $\left[0,180^{\circ}\right]$ or $\left[180^{\circ}, 360^{\circ}\right]$
* if symmetry at all, consider $\theta$ in range $\left[0,90^{\circ}\right]$ only.

Example 9: Sketch the graph of $r=2 \sin \theta$

## Solution: (Method 1)

Here is the complete table

| $\theta$ | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ <br> $=2 \sin \theta$ | 0 | 1.0 | 1.732 | 2 | 1.732 | 1 | 0 | -1.0 |


| $\theta$ | 240 | 270 | 300 | 330 | 360 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $r=2 \sin \theta$ | -1.732 | -2 | -1.732 | -1 | 0 |

Then, plot the points on the diagram:

Method 2:
Symmetrical test for $f(\theta)=2 \sin \theta$

| Symmetry | Symmetrical test |
| :---: | :---: |
| About $x$-axis |  |
| About $y$-axis |  |
| About origin |  |

Since $r$ is symmetry at $y$-axis, then consider $\theta$ in the range $\left[0,90^{\circ}\right]$ and $\left[270^{\circ}, 360^{\circ}\right]$

| $\theta$ | 0 | 30 | 60 | 90 | 270 | 300 | 330 | 360 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ <br> $=2 \sin \theta$ | 0 | 1.0 | 1.732 | 2 | -2 | -1.732 | -1 | 0 |

Then, plot the points on the diagram:

Example 10: Sketch the graph of $r=\frac{3}{2}-\cos \theta$

| Symmetry | Symmetrical test |
| :---: | :---: |
| About x -axis |  |
|  |  |
| About y -axis |  |
| About origin |  |

Since $r$ symmetry at $x$-axis, consider $\theta$ in range [ $0,180^{\circ}$ ] only.

| $\theta$ | 0 | 30 | 60 | 90 | 120 | 150 | 180 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r=\frac{3}{2}-\cos \theta$ |  |  |  |  |  |  |  |

Then, plot the points on the diagram:
$\square$

Example 11: Sketch the graph of $r=2 \sin ^{2} \theta$

| Symmetry | Symmetrical test |
| :---: | :---: |
| About x-axis |  |
| About y-axis |  |
| About origin |  |

Since $r$ symmetry at $\qquad$ , consider $\theta$ in range $\qquad$ only.

| $\theta$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r=2 \sin ^{2} \theta$ |  |  |  |  |  |  |  |

Then, plot the points on the diagram:

### 1.6 Finding the Intersection Points between Two

## Curves In Polar Coordinates

## Steps:

1. Solve simultaneous equations between 2 curves and determine the intersection points. -if one of the curves is a line (i.e. $\theta=k$ ), we need to find intersection point for $\theta=k-\pi$.
2. Check whether the curves intersect at the origin.

- Test for $r=0$. If $\theta$ exist, it means the 2 curves intersect at the origin.


## Example 12:

Find the points of intersection of the circle $r=2 \cos \theta$ and $r=2 \sin \theta$ for $0 \leq \theta \leq \pi$

## Example 13:

Find the points of intersection of the curves $r=\frac{3}{2}-\cos \theta$ and $\theta=\frac{2 \pi}{3}$.

## Example 14:

A polar equation is given as $r=2-5 \sin \theta$.
a) Show that the curve is symmetrical about the $y$ axis and passes through the origin.
b) Make a suitable graph for $-90^{\circ} \leq \theta \leq 90^{\circ}$. Use the table and the information in part a) to make a full sketch of the graph.
c) Find the intersection points of the graph and the straight line $\theta=\frac{11 \pi}{12}$

### 1.7 References

1. George B. Thomas, Maurice D. Weir, Joel R. Hass, and Frank R. Giordano. 2005. Thomas' Calculus Early Transcendental (11th Edition) (Thomas Series). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
2. Abdul Wahid Md Raji, Hamisan Rahmat, Ismail Kamis, Mohd Nor Mohamad, Ong Chee Tiong. Engineering mathematics I, Penerbit UTM, 2012.
