
SKEM4153

ROBOT TECHNOLOGY FOR

AUTOMATION

CHAPTER 7

Work Cell and Robot Programming

Prof. Dr. Shamsudin H.M. Amin

Ir. Dr. Mohd Ridzuan Ahmad

(mdridzuan@utm.my)

Contents:

• Work Cell Controller Programming

• Programming Sequential Cell Activity

• Robot Language Development

• Language Classification

• Robot Program Fundamentals
– V+ Programming Language

– Program Creation, Location Creation

– Creating and Altering Programs

– Motion and Cycle Times

– Relative Locations

– Sample Programs

2

1. Work Cell Controller Programming

The 3 categories of work cell control

software

–Software Developed In-house

–Application Enabler Software

–OSI (Open System Interconnected)

Solution

3

1. Work Cell Controller Programming
- Software Developed In-house

• Written by end user using C or VB.

• Advantage – provide opportunity for tight

integration of information and data.

• Disadvantage – development time and cost

is high, inability to change the software

easily when the cell hardware or

configuration changes.

4

1. Work Cell Controller Programming
- Application Enabler Software

• Enabler software provides a set of software productivity
tools for the development of control programs for CIM
cells.

• Products such as Plantworks from IBM, Industrial Precision
Tool Kit from HP etc. help reduce the difficulty in
developing cell control and management applications.

• The enablers have a library of driver programs to permit
exchange of data and information.

• In addition, they offer LAN and serial data
communication support etc.

• Advantage – tenfold improvement in cell control and
ease of program development.

• Disadvantage – the cell control is tied to a third party
software solution.

5

1. Work Cell Controller Programming
- OSI (Open System Interconnected) Solution

• MMS (manufacturing message specification) is
most often used. It is an ISO 9506, for network
communication between intelligent devices in
a production environment.

• MMS has 3 parts: service spec, protocol spec,
robot interface & protocol spec.

• Advantage – MMS is a common
communication standard, not a third party
vendor.

• Disadvantage – only a limited number of
equipment vendors agreed to support the
standard.

6

2. Programming Sequential Cell Activity

In most applications, sequential control is

performed by PLCs.

In some cases, the robot controller provides

the control function.

7

2. Programming Sequential Cell Activity

Sequential programming languages:

• Ladder logic – used with PLCs

• Instruction list – based on assembly language

• Structured text – similar to C

• Sequential function chart – a structured

language based on the French GRAFCET

language

• Function block diagrams – looks like electrical

schematics with ladder logic elements

8

3. Language Classification

• Programming Levels
• Level 1 Joint control languages

• Level 2 Primitive motion languages

• Level 3 Structured programming languages

• Level 4 Task-oriented languages

• Industry practice
• Manual lead-through programming

• Powered lead-through programming

• Textual languages
9

3. Language Classification

10

Task-oriented languages

Structured programming
languages

Primitive motion control

Joint control languages

Level 4

Level 3

Level 2

Level 1
Move Joint 1 120
Move Joint 2 45

Approach pickup, 100
Moves pickup
Departs pickup, 100

If angle eq alfa then
begin cycle

…
…
…

else

Place workpart A on Tray 1

3. Language Classification

Origin Level2 Level 3 Level 4

ABB

Adept

RAPID

V

V+

Cincinnati Milacron

GMFanuc

IBM

T3

KARL

AML, AML/E AUTOPASS

Kawasaki

McDonnell Douglas

Panasonic

Rhino

Sankyo

Seiko

Unimation

RoboTalk

VAL

AS

MCL

PARL-1

Sankyo language

DARL II

VAL II

11

Brief Survey on Programming Languages by Level

3. Language Classification

Industry practice

Manual lead-through programming

Powered lead-through programming

Textual languages

12

3. Language Classification

Manual lead-through programming
requires the programmer to physically hold the robot

arm and end-effector, and manually move it through

the desired motion cycle.

A down sized model of large and heavy robot is used

to manipulate the motion. Teach buttons located

near the wrist, are depressed and the brakes will be

released to enable robot movement for teaching the

robot.

13

3. Language Classification

Powered lead-through

programming

Most commonly implemented today.

Teach pendant/ teach box is used to power drive and

control the robot joints. The motion points are stored in

the memory for playback during the work cycle.

14

3. Language Classification

Textual languages

Use an English-like language to establish the logic and sequence of

the work cycle

Program instructions are entered via keyboard. The teach pendant is
used to define the locations of the various points on the work space.

The robot programming language names the points as symbols in the

program, and these symbols are subsequently defined by showing the

robot the locations.

Advantages: permits the computations, allows more detailed logic

flows, subroutines are allowed in the programs, and the greater use of

sensors and communication.

15

4. Robot Program Fundamentals

We will now attempt to learn the

V+ Advanced Robot Programming Language

16

V+ Language

17

World State
All movement is parallel to the

World coordinates in the direction

of X, Y, and Z.

It is also possible to rotate about

the world coordinates by using the

keys RX, RY, and RZ.

The gripper is selected by pressing

T1 and operated by pressing either

the + or - Speed Bar keys.

Robot States

Y

X

Z

World coordinate system

V+ Language

18

Tool State

All movement is parallel to the Tool

coordinates in the direction of X, Y,

and Z.

It is also possible to rotate about the

Tool coordinates by using the keys

RX, RY, and RZ.

The gripper is selected by pressing T1

and operated by pressing either the

+ or - Speed Bar keys.

NOTE: Tool X is in the direction as

indicated by the joint 6 reference

mark

Robot States

Z

Y

X

Tool coordinate system

V+ Language

19

Joint State

Individual joint rotation on axis 1

to 6.

Rotation can be either positive or

negative in direction.

The gripper is selected by pressing

T1 and operated by pressing

either the + or - Speed Bar keys.

Robot States

Axis 1

Axis 2

Axis 3

Axis 4

Axis 6

Axis 5

Program Creation

Types of Programs

V+ program is a collection of instructions that the Adept operating

system follows to move a device, activate external/internal signals,

perform computations, record data and display information.

– Robot Control Program

• directly controls the robot

– Process Control Program

• Can execute asynchronously, independently, and

concurrently along with the robot control program. Often

used to monitor and control external processes via external

digital signal lines.
– Monitor Command Program

• Consists entirely of monitor commands rather than program

instructions.

20

Location Creation

Location Types

• Transformation

• Precision Points

21

Location Creation

22

Location Types
• Transformation

Six values of a transformation are

labelled below, with the lower case

characters representing “y=yaw”,

“p=pitch”, “r=roll”.

x y z y p r

0 950 1500 0 120 30

Position Orientation

(Cartesian space) Yaw, Pitch, Roll

(end-effector)

Transformation Values

Y

X

Z

World coordinate system

Z

Y

X

Tool coordinate system

Location Creation

23

Location Types
• Precision Points

For applications where joint

orientation is critical, where exact

trace of joints, elbow, wrist is critical.

For a 6 DOF robot, the six values of

the joints are:

Jt1 Jt2 Jt3 Jt4 Jt5 Jt6

0 0 0 0 0 0

(Pose 1)

90 0 0 0 0 0

(Pose 2)

90 0 -90 0 0 0

(Pose 3)

90 90 -90 0 0 0

(Pose 4)

Joint Values for Precision Points

Y

X

Z

World coordinate system

Z

Y

X

Tool coordinate system

Creating and Altering Location Variables

Commands to be typed in creating and altering location variables

HERE Monitor Command

First, move the robot (via Teach Pendant) to the desried location, then type
HERE loc_name
e.g. HERE pickuppt

HERE hole#1

TEACH Monitor Command
Often used to create multiple locations in a sequence and placed into a one

dimensional array.
TEACH loc_name
e.g. TEACH pickuppoint

Each time “REC/DONE” button on the Teach Pendant (MCP-Manual Control
Pendant) is pressed, a location is created. Continue the procedure (i.e. move the
robot to a location, the press the “REC/DONE” button) until you are finished. Then
when finished, press the RETURN key.

24

Motion and Cycle Times

Motion Path Types

Joint Interpolated

Motions

The new joint angles are

calculated, and the motion is

executed by driving those
angles without regard to any

specific path.

The motion is very fast. This is also
called jogging. E.g. 11m/s for

RX90

25

Motion and Cycle Times

Motion Instructions
APPRO
This instruction initiates an approach to a specified location

APPRO loc_name, destination_height

It can either be a straight line motion, APPROS or a joint interpolated motion,

APPRO loc_name can be precision point (i.e. #loc_name) or transformation
(loc_name) that currently resides in memory.

destination_height in mm, can be above (+) or below (-) the location along the
Tool Z-axis
of when the location was defined.

Example: APPRO #toolpt1, 100
(approach a location stored as precision point #toolpt1, a distance 100mm
above the Z-axis of the Tool when the location was defined)

26

Motion and Cycle Times

Motion Instructions
MOVE
This instruction initiates a move to a specified location

MOVE loc_name
MOVES loc_name

It can either be a straight line motion, MOVES or a joint interpolated motion, MOVE
loc_name can be precision point (i.e. #loc_name) or transformation (loc_name)
that currently resides in memory. The robot will assume the position an orientation of
the location as it was created. Example:

MOVES loc_name
(moving in a straight line to a location stored as loc_name)

MOVE #loc_name
(move in joint interpolated motion i.e. jogging to precision point #loc_name this
time using exactly the values of joint angles stored as precision point)

27

Motion and Cycle Times

Motion Instructions
DEPART

This instruction initiates a depart from a specified location

DEPARTS destination_height

It can either be a straight line motion, DEPARTS or a joint interpolated

motion, DEPART destination_height in mm, can be above (+) or below

(-) the location along the Tool Z-axis of when the location was

defined.

Example: DEPARTS 100

(departing in a straight line motion from a specified location where
the robot is currently at, to a distance 100mm, above the Z-axis of the

Tool when the location was defined)

28

Motion and Cycle Times

Motion Speed
SPEED speed_factor

The speed factor values possible are:

Minimum = 0.000001

Maximum = use extreme care with values over

100

Normal full speed = 100

Default at start-up = 50

Example: SPEED 5

FINE

(defines the speed to be 5, and next commands the robot to do FINE

speed, i.e. slow)

29

Motion and Cycle Times

Cycle Times

There are 16 built-in timers (in Adept).

TIMER(timer_number) = time_value

Example 1: Example 2:

Setting a timer to zero and Setting timer to zero and

timing the move to “pickpoint” then waiting for 5 sec
then

move to “pickpoint”

BREAK BREAK

TIMER(1) = 0 TIMER(1) = 0

MOVE pickpoint WAIT TIMER(1) >= 5

BREAK MOVE pickpoint

t = TIMER (1)

30

Relative locations for Palletizing Program

31

x-direc

y-direc

rotation

radius

Rectangular Pallet

Circular Pallet

.PROGRAM gettool5()
SPEED 75 ALWAYS
WAIT SIG(-1036)
WAIT SIG(1038)
SIGNAL 34
MOVE apprtoolstnd
MOVE overtool5
SPEED 45
MOVES griptool5
WAIT SIG(1036)
CLOSEI
SIGNAL -34, 33
SPEED 45
MOVES tool5pin
WAIT SIG(-1038)
MOVES frnttool5
MOVE apprtool5
MOVE apprtoolstnd
RETURN

.END

An Example Program for Clock Assembly

using V+ Programmimg Language

32

.PROGRAM clock()
1 SPEED 75 ALWAYS

RESET
CALL gettool5()

2 WAIT SIG(1048)
IF count == 12 GOTO 3
CALL woodbase()
SIGNAL 48
WAIT SIG(-1048)
SIGNAL -48
WAIT SIG(1048)
CALL plate()
CALL puttool5()
CALL getsucker()

3 CALL puttool5()
MOVE apprtoolstnd

.END

Locations as defined by the robot controller

apprtoolstnd -0.932732344 0.359892339 -0.022089828 0.354187518 0.925977468
0.130831733 0.067540027 0.114207059 -0.991158485 89.412101746
865.715270996 154.966278076

overtool5 0.350352436 0.925255001 0.145452425 0.935987949 -0.35156399 -
0.018145595 0.03434654 0.142499074 -0.989198864 164.168502808
1141.583618164 -110.121070862

griptool5 0.35035795 0.925256193 0.145431384 0.935985684 -0.351570785 -
0.018132156 0.034352537 0.142474443 -0.9892022164.1690979
1141.580444336 -182.095916748

An Example Program for Clock Assembly using

V+ Programmimg Language

33

• Textbook:

1. James A. Rehg: Introduction to Robotics in CIM Systems.
Fifth Edition, Prentice-Hall. 2003.

•

• Reference book:

1. Mikell P. Groover: Automation, Production Systems, and
Computer Integrated Manufacturing, Second Edition.
2004.

2. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel,
Nicholas G. Odrey: Industrial Robotics: Technology,
Programming, and Applications, McGraw-Hill. 1986.

3. Farid M. L. Amirouche: Computer-Aided Design and
Manufacturing. Prentice-Hall.

4. Richard K. Miller, Industrial Robot Handbook. Van
Nostrand Reinhold, N.Y. (1987).

34

TEXT AND REFERENCE BOOKS

THANK YOU

35

