OPENCOURSEWARE @ல®®

CHAPIER 2 Mathematical Modeling in Transfer Function Form

DR. HERMAN WAHID | DR. SHAHDAN SUDIN DR. FATIMAH SHAM ISMAIL| DR. SHARSHUHAZA SAHLAN

Department of Control and Mec hatronics Engineering
Universiti Teknologi Malaysia

OPENCOURSEWARE

Chapter Outline

- Introduction to Laplace Transform and
2.1 Transfer Function
- 2.1.1 Laplace Transform
- 2.1.2 Transfer function
2.2 • Modeling of Electrical Systems
- Modeling of Mechanical Systems
- 2.3.1 Translational system
- 2.3.2 Rotational system
- 2.3.3 Rotational system with gears
2.4 - Modeling of Electromechanical Systems

OPENCOURSEWARE 웅륨
2.1 Introduction to Laplace Transform and Transfer Function

OPENCOURSEWARE

The Need for a Mathematical Model

Mathematical modeling

 (of the plant to be controlled)
Design of controller

Mathematical model of a dynamical system:
$>$ May be obtained from the schematics of the physical systems,
$>$ Based on physical laws of engineering
$>$ Newton's Laws of motion
> Kirchoff's Laws of electrical network
> Ohm's Law

OPENCOURSEWARE @O®®

Modeling of Control System Plants
Transfer
function

We only cover this

State-space equation

OPENCOURSEWARE @O.O.

2.1.1 Laplace Transform

Time-domain signals

Frequency-domain signals

Equations:

Laplace Transform: $\quad \boldsymbol{L}[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$
Inverse Laplace Transform: $\quad \boldsymbol{L}^{-1}[F(s)]=f(t) u(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s$
$u(t)=1, t>0$
$=0, t<0$

OPENCOURSEWARE @O.O.

Laplace Transform Table

No.	$f(t)$	$F(s)$
1.	$\delta(t)$	1
2.	$u(t)$	$\frac{1}{s}$
3.	$t u(t)$	$\frac{1}{s^{2}}$
4.	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$
5.	$e^{-a t} u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^{2}+\omega^{2}}$

Given $f(t)$, what is $F(s)$?

OPENCOURSEWARE @С®®

Laplace Transform Theorem

No.	Theorem	Description
1.	$L[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)$	Laplace definition
2.	$L[k f(t)]=k F(s)$	Linearity theorem
3.	$L\left[f_{1}(t)+f_{2}(t)\right]=F_{1}(s)+F_{2}(s)$	Linearity theorem
4.	$L\left[e^{-a t} f(t)\right]=F(s+a)$	Frequency shift theorem
5.	$L[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
6.	$L\left[\frac{d f}{d t}\right]=s F(s)-f(0)$	Differentiation theorem
7.	$L\left[\frac{d^{2} f}{d t^{2}}\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$	Differentiation theorem
8.	$L\left[\frac{d^{n} f}{d t^{n}}\right]=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0)$	Differentiation theorem (in general)
9.	$f(\infty)=\lim _{s \rightarrow 0} s F(s)$	Final value theorem

OPENCOURSEWARE @O.O.

Example 1:

- Find the Laplace Transform of $y(t)$, assuming zero initial condition

$$
\frac{d^{2} y(t)}{d t^{2}}+12 \frac{d y(t)}{d t}+32 y(t)=32 u(t)
$$

where $u(t)$ is a unit step.

- Solution:
- [Answer: $\left.s^{2} Y(s)+12 s Y(s)+32 Y(s)=32 U(s)\right]$

Inverse Laplace Transform

- Recall:

$$
f(t) \stackrel{\boldsymbol{L}}{\boldsymbol{L}^{-1}} F(s)
$$

- Therefore, for Inverse Laplace Transform,

Given $F(s)$, what is $f(t)$?

- Refer to Laplace Transform Table on page 8.

OPENCOURSEWARE @O.0®

Inverse Laplace Transform

- 3 situations:

$$
F(s)=\frac{N(s)}{D(s)} \text { denominator }
$$

i. Roots of $\boldsymbol{D}(\mathbf{s})$ are real \& distinct, e.g.

$$
F(s)=\frac{2}{(s+1)(s+2)}
$$

ii. Roots of $D(s)$ are real \& repeated, e.g.

$$
F(s)=\frac{2}{(s+1)(s+2)^{2}}
$$

iii. Roots of $D(s)$ are complex, e.g.

$$
F(s)=\frac{2}{s\left(s^{2}+2 s+5\right)}
$$

- Hint: Use 'Partial Fraction Expansion'

OPENCOURSEWARE (1)
2.1 .2 Transfer Function

OPENCOURSEWARE @O®

2.1.2 Transfer Function, $G(s)$

- Definition:

$$
\begin{aligned}
& \xrightarrow[r(t)]{\text { Input }} \xrightarrow[\text { System }]{\substack{\text { Output }}} \\
& G(s)=\frac{\text { Laplace transform of output signal, } \mathrm{c}(t)}{\text { Laplace transform of input signal, } \mathrm{r}(t)} \\
&=\frac{C(s)}{R(s)}
\end{aligned}
$$

OPENCOURSEWARE @O.O.

- Differential equation model:

$$
a_{n} \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\ldots+a_{0} c(t)=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\ldots+b_{0} r(t)
$$

- Laplace transform both sides ('Differentiation Theorem' from p11) - assume zero initialcondition:

$$
a_{n} s^{n} C(s)+a_{n-1} s^{n-1} C(s)+\ldots+a_{0} C(s)=b_{m} s^{m} R(s)+b_{m-1} s^{m-1} R(s)+\ldots+b_{0} R(s)
$$

Transfer function

OPENCOURSEWARE © (O.O区-®

Example 3:

- Find the transfer function represented by:

$$
\frac{d c(t)}{d t}+2 c(t)=r(t)
$$

- Use MATLAB to create the above transfer function.
- Find the response, $c(t)$, to an input $r(t)=u(t)$, a unit step input, assuming zero initial condition.
- [Answer: $\frac{C(s)}{R(s)}=\frac{1}{s+2}$]

OPENCOURSEWARE（⿺辶巛이이
2.2 Modeling of Elec tric al System

OPENCOURSEWARE (1)

Review on Electrical Circuit Analysis

- Ohm's Law
- Kirchoff's Voltage Law
- Kirchoff's Current Law
- Mesh \& Nodal Analysis

Ohm's Law

Kirchoff's Current Law

OPENCOURSEWARE @O.O.

Electrical Components

- Passive linear components
i. Capacitor (C) - store energy
ii. Resistor (R) - dissipate energy
iii. Inductor (L) - store energy
- Relationships:

Component	Voltage-current	Voltage-charge	$\begin{gathered} \text { Impedance } \\ \mathrm{Z}(\mathrm{~s})=\mathrm{V}(\mathrm{~s}) / \mathrm{I}(\mathrm{~s}) \end{gathered}$	
$-($ Capacitor	$v(t)=\frac{1}{C} \int i(\tau) d \tau$	$v(t)=\frac{1}{C} q(t)$	$\frac{1}{C s}$	
- $\mathrm{M}^{\text {Resistor }}$	$v(t)=R i(t)$	$v(t)=R \frac{d q(t)}{d t}$	R	
」SOM	$v(t)=L \frac{d i(t)}{d t}$	$v(t)=L \frac{d^{2} q(t)}{d t^{2}}$	Ls	

OPENCOURSEWARE @O.O.

Example 4: Single-loop network

- Find the transfer function of the circuit using
- Differential Equation Method
- Mesh Analysis (Laplace)
- Nodal Analysis (Laplace)

Kirchoff's Law

OPENCOURSEWARE @O.0®

Solution for example 4

1. Using differential equation

From table

TRANSFER FUNCTION

$$
\frac{V_{C}(s)}{V(s)}=\frac{1}{L C s^{2}+R C s+1}
$$

$$
L C \frac{d^{2} v_{c}(t)}{d t^{2}}+R C \frac{d v_{c}(t)}{d t}+v_{c}(t)=v(t)
$$

Laplace transform

$$
\left(L C s^{2}+R C s+1\right) V_{c}(s)=V(s)
$$

OPENCOURSEWARE @O.O.
2. Solving in Laplace domain

Time domain

$$
V_{R}(s), V_{L}(s), V_{C}(s)=?
$$

$$
\text { KVL: } \quad R I(s)+\operatorname{LsI}(s)+\frac{1}{C s} I(s)=V(s)
$$

$$
\frac{I(s)}{V(s)}=? \quad \frac{V_{C}(s)}{V(s)}=?
$$

OPENCOURSEWARE @O.O.

Example 5: Multiple-loop network

- Find the transfer function $\frac{I_{2}(s)}{V(s)}$ of the circuit using
- Mesh Analysis
- Nodal Analysis

OPENCOURSEWARE @®®®

Solution for Example 5

Find the transfer function, $\frac{I_{2}(s)}{V(s)}$

Next, find $\quad \frac{V_{C}(s)}{V(s)}=$?

OPENCOURSEWARE @С®®

Generic equations - Two-loop Electrical System

- Depending on number of loops in the circuit, use the following rule to obtain simultaneous equations \rightarrow

	$\left(\begin{array}{c} \text { Sum of } \\ \text { impedances } \\ \text { around Mesh } \\ 1 \end{array}\right)$			$\left(\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { common to } \\ \text { Mesh 1 and } \\ \text { Mesh } 2\end{array}\right)$	$\mathrm{I}_{2}(\mathrm{~s})$	$=$	$\left(\begin{array}{c}\text { Sum of applied } \\ \text { voltage around } \\ \text { Mesh 1 }\end{array}\right)$
	Sum of impedances common to Mesh 1 and mesh 2	$\mathrm{I}_{1}(\mathrm{~s})$	+	Sum of impedances around Mesh 2	$\mathrm{I}_{2}(\mathrm{~s})$	$=$	Sum of applied voltage around Mesh 2

OPENCOURSEWARE @O.O.

2.3 Modeling of Mechanical System
 - Translational Rotational Rotational with Gears

OPENCOURSEWARE @®®®

2.3.1 Translational

- Newton's Laws of Motion:
i. First law: The velocity of a body remains constant unless the body is acted upon by an external force.
ii. Second law: The acceleration a of a body is parallel and directly proportional to the net force \mathbf{F} and inversely proportional to the mass m, i.e., $\mathbf{F}=m a$.
iii. Third law: The mutual forces of action and reaction between two bodies are equal, opposite and collinear.

OPENCOURSEWARE (1)

Translational Mechanical System

* 3 passive and linear components in mechanical system:
- Spring - energy storage element
\longmapsto inductor

$$
\text { SNOM } \rightarrow
$$

A00

- Mass - energy storage element
\longmapsto capacitor

- Viscous damper - energy-dissipative element \Longleftrightarrow resistor

$-\mathrm{Wr}$

OPENCOURSEWARE @O.O.

Translational Mechanical Components

Component	Force-velocity	Forcedisplacement	$\begin{gathered} \text { Impedance } \\ Z_{M}(s)=F(s) / X(s) \\ \hline \end{gathered}$
	$f(t)=K \int_{0}^{\tau} v(\tau) d \tau$	$f(t)=K x(t)$	K
Viscous damper	$f(t)=f_{v} v(t)$	$f(t)=f_{v} \frac{d x(t)}{d t}$	$f_{v} s$
Mass	$f(t)=M \frac{d v(t)}{d t}$	$f(t)=M \frac{d^{2} x(t)}{d t^{2}}$	$M s^{2}$

OPENCOURSEWARE @®®®

Spring, Mass \& Damper in action

- Applied force $f(t)$ points to the right
- Mass is traveling toward the right
- All other forces impede the motion and act to opposite direction
- Single input single output (SISO) system

OPENCOURSEWARE @O.O.

Example 6:

- Find the transfer function $X(s) / F(s)$, for the following mechanical system.

OPENCOURSEWARE @O®®
Find the transfer function $X(s) / F(s)$ Free body diagram
\# Equation of motion: \rightarrow positive direction to the right

OPENCOURSEWARE @O.O.

Example 7:

- Find the transfer function $X_{2}(s) / F(s)$, for the following mechanical system.
- Answer:

$$
G(s)=\frac{X_{2}(s)}{F(s)}=\frac{\left(f_{v 3} s+K_{2}\right)}{\Delta}
$$

where

$$
\left.\Delta=\left\lvert\, \begin{array}{cc}
{\left[M_{1} s^{2}+\left(f_{V 1}+f_{V 3}\right) s+\left(K_{1}+K_{2}\right)\right]} & -\left(f_{V 3} s+K_{2}\right) \\
-\left(f_{V 3} s+K_{2}\right) & {\left[M_{2} s^{2}+\left(f_{V 2}+f_{V 3}\right) s+\left(K_{2}+K_{3}\right)\right]}
\end{array}\right.\right]_{33}
$$

OPENCOURSEWARE

Generic equations - Two Translational Body System

OPENCOURSEWARE @®®®

2.3.2 Rotational Mechanic al System

Component	Torque-angular velocity	Torque-angular displacement	$\begin{gathered} \text { Impedance } \\ Z_{M}(s)=T(s) / \theta(s) \end{gathered}$
	$T(t)=K \int_{0}^{t} \omega(\tau) d \tau$	$T(t)=K \theta(t)$	K
Viscous damper	$f(t)=f_{v} v(t)$	$T(t)=D \frac{d \theta(t)}{d t}$	Ds
Inertia	$T(t)=D \frac{d \omega(t)}{d t}$	$T(t)=J \frac{d^{2} \theta(t)}{d t^{2}}$	$J s^{2}$

OPENCOURSEWARE @O.0®

Example 8:

Find the transfer function $\theta_{2}(s) / T(s)$.
The rod is supported by bearing and at either end is undergoing torsion. A torque is applied at the left and the displacement is measured at the right.

OPENCOURSEWARE @O.0®

Solution 8:

- Obtain the schematic from the physical system
- Assume:
o The torsion acts like a spring, concentrated at one particular point in the rod
0 Inertia J_{1} to the left and J_{2} to the right
o The damping inside the flexible shaft is negligible

OPENCOURSEWARE @®®

Torques on J1 when J2 is in motion

Equation of motion

$$
\left(J_{1} s^{2}+D_{1} s+K\right) \theta_{1}(s)-K \theta_{2}(s)=T(s)
$$

Torques on J2 if J2 in motion

OPENCOURSEWARE @®®

Torques on J2 if J1 in motion

OPENCOURSEWARE @O®

- Equations of motions:

$$
\begin{gathered}
\left(J_{1} s^{2}+D_{1} s+K\right) \theta_{1}(s)-K \theta_{2}(s)=T(s) \\
-K \theta_{1}(s)+\left(J_{2} s^{2}+D_{2} s+K\right)=0
\end{gathered}
$$

- Hence giving the transfer function

$$
\begin{aligned}
& \frac{\theta_{2}(s)}{T(s)}=\frac{K}{\Delta} \\
& \text { where } \quad \Delta=\left|\begin{array}{cc}
\left(J_{1} s^{2}+D_{1} s+K\right) & -K \\
-K & \left(J_{2} s^{2}+D_{2} s+K\right)
\end{array}\right|
\end{aligned}
$$

- giving the block diagram

OPENCOURSEWARE @O®®

Generic equations - Two Rotational Body System

$\left(\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { connected } \\ \text { to the } \\ \text { motion at } \theta_{1}\end{array}\right) \quad \theta_{1}(s)-\left(\begin{array}{c}\text { Sum of } \\ \text { impedances } \\ \text { between } \theta_{1} \\ \text { and } \theta_{2}\end{array}\right) \theta_{2}(s)=\left(\begin{array}{c}\text { Sum of } \\ \text { applied } \\ \text { torques at } \\ \theta_{1}\end{array}\right)$

OPENCOURSEWARE @O.O.

2.3.3 Rotational with gears

- Gears
o Used with rotational systems (esp. those driven by motors).
o Match driving systems with loads.
o E.g. Bicycles with gearing systems
- Uphill: shift gear for more torque \& less speed
- Level road: shift gear for more speed \& less torque
 OPENCOURSEWARE @С®®

Input gear with radius r_{1} and N_{1} teeth rotated through angle $\theta_{1}(t)$ due to torque $T_{1}(t)$

ratio number of teeth \propto ratio of radius

Output gear with radius r_{2} and N_{2} teeth responds through angle $\theta_{2}(t)$ and delivering a torque $T_{2}(t)$
ratio angular disp $\propto \frac{1}{\text { ratio of number of teeth }}$

$$
\frac{\theta_{2}}{\theta_{1}}=\frac{r_{1}}{r_{2}}=\frac{N_{1}}{N_{2}}
$$

Just like translational motion, energy = force x disp.

$$
T_{1} \theta_{1}=T_{2} \theta_{2} \quad \square \quad \frac{T_{2}}{T_{1}}=\frac{\theta_{1}}{\theta_{2}}=\frac{N_{2}}{N_{1}}
$$

$$
\xrightarrow{T_{1}} \xrightarrow{\frac{N_{2}}{N_{1}}} \xrightarrow{T_{2}}
$$

OPENCOURSEWARE @ִ®®

Equivalent system at $\boldsymbol{\theta}_{1}$ at input N_{1}

$$
T_{1}(t) \frac{N_{2}}{N_{1}} \theta_{2}(t) \quad D\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

$$
T_{1}=J\left(\frac{N_{1}}{N_{2}}\right)^{2} s^{2} \theta_{1}(s)+D\left(\frac{N_{1}}{N_{2}}\right)^{2} s \theta_{1}(s)+K\left(\frac{N_{1}}{N_{2}}\right)^{2} \theta_{1}(s)
$$

$$
T_{1} \frac{N_{2}}{N_{1}}=J s^{2} \theta_{2}(s)+D s \theta_{2}(s)+K \theta_{2}(s)
$$

OPENCOURSEWARE @O.0®

- Genera lizing the result \rightarrow
- We can say that the rotational mechanical impedancescan be reflected through geartrains by multiplying the mechanical impedance by the ratio

Number of teeth of gear
on destination shaft
Number of teeth of gear
on source shaft

OPENCOURSEWARE @O.O.
Find the transfer function $\theta_{2}(\mathrm{~s}) / \mathrm{T}_{1}(\mathrm{~s})$ Example 9 and solution:

OPENCOURSEWARE 웅ํㅁ
2.4 Modeling of Electromechanical System

OPENCOURSEWARE @O.O.

Electromechanical System

- Electromechanical system: electrical + mechanical components that generates a mechanical output by an electrical input (motor)

Schematic diagram OPENCOURSEWARE @®®®

Armature circuit with $i_{a}(t)$, passes through magnetic field and produces a force F (Fleming's left-hand rule)

Develop magnetic field B by stationary permanent magnet

The resulting torque turns the
Fixed field rotor (rotating member of motor)

Since the current-carrying armature is rotating in a magnetic field, its voltage v_{b} (back electromagnetic force emf) is proportional to angular valocity.

$$
\begin{equation*}
v_{b}(t)=K_{b} \frac{d \theta_{m}(t)}{d t} \tag{1}
\end{equation*}
$$

Taking the L.T:

$$
\begin{equation*}
V_{b}(s)=K_{b} s \theta_{m}(s) \tag{2}
\end{equation*}
$$

KVL around the armature circuit

$$
\begin{equation*}
R_{a} I_{a}(s)+L_{a} s I_{a}(s)+V_{b}(s)=E_{a}(s) \tag{3}
\end{equation*}
$$

Torque developed by the motor $\left(T_{m}\right)$ is proportional to the armature current $\left(i_{a}\right)$.

$$
\begin{equation*}
T_{m}(s)=K_{t} I_{a}(s) \quad \text { or } \quad I_{a}(s)=\frac{1}{K_{t}} T_{m}(s) \tag{4}
\end{equation*}
$$

Substitute (2) and (4) into (3)

$$
\begin{equation*}
\frac{\left(R_{a}+L_{a} s\right) T_{m}(s)}{K_{t}}+K_{b} s \theta_{m}(s)=E_{a}(s) \tag{5}
\end{equation*}
$$

OPENCOURSEWARE @O.O.
Equivalent mechanical loading on motor

Substitute (6) into (5) yields

$$
\begin{equation*}
\frac{\left(R_{a}+L_{a} s\right)\left(J_{m} s^{2}+D_{m} s\right) \theta_{m}(s)}{K_{t}}+K_{b} s \theta_{m}(s)=E_{a}(s) \tag{7}
\end{equation*}
$$

Assume La <<<Ra , then (7) becomes

$$
\begin{equation*}
\frac{\theta_{m}(s)}{E_{a}(s)}=\frac{K_{t} / R_{a} J_{m}}{s\left(s+\frac{1}{J_{m}}\left(D_{m}+\frac{K_{b} K_{t}}{R_{a}}\right)\right)} \Rightarrow \frac{K}{s(s+\alpha)} \tag{8}
\end{equation*}
$$

OPENCOURSEWARE @O.O.

DC motor driving a rotational mechanical load

From (5), with $L a=0$

$$
\begin{aligned}
& \frac{R_{a} T_{m}(s)}{K_{t}}+K_{b} s \theta_{m}(s)=E_{a}(s) \text { taking inverse Laplace transform } \\
& \frac{R_{a} T_{m}(t)}{K_{t}}+K_{b} \frac{d \theta_{m}(t)}{d t}=e_{a}(t)
\end{aligned}
$$

OPFNCOIIRSFWARF ल〇®®

$$
-T_{m}(t)=-\frac{K_{b} K_{t}}{R_{a}} \frac{d \theta_{m}(t)}{d t}+\frac{K_{t}}{R_{a}} e_{a}(t)=-\frac{K_{b} K_{t}}{R_{a}} \omega_{m}+\frac{K_{t}}{R_{a}} e_{a}(t)
$$

At steady state: $T_{m}=-\frac{K_{b} K_{t}}{R_{a}} \omega_{m}+\frac{K_{t}}{R_{a}} e_{a}$

OPENCOURSEWARE @O.O.

Example 10:

Find $\frac{\theta_{L}(s)}{E_{a}(s)}$

$$
\text { Answer: } \quad \frac{\theta_{L}(s)}{E_{a}(s)}=\frac{0.0417}{s(s+1.667)}
$$

OPENCOURSEWARE @O®®

Solution 10:

1) Find Mechanical Constants J_{m} and D_{m}
a. Total Inertia at the armature

$$
\begin{equation*}
J_{m}=J_{a}+J_{L}\left(\frac{N_{1}}{N_{2}}\right)^{2}=5+700\left(\frac{1}{10}\right)^{2}=12 \tag{1}
\end{equation*}
$$

b. Total damping at the armature

$$
\begin{equation*}
D_{m}=D_{a}+D_{L}\left(\frac{N_{1}}{N_{2}}\right)^{2}=2+800\left(\frac{1}{10}\right)^{2}=10 \tag{2}
\end{equation*}
$$

OPENCOURSEWARE @O.O.
2) Find the electrical constants $\frac{K_{t}}{R_{a}}$ and K_{b}

From the Torque-speed curve

$$
\begin{array}{ll}
T_{\text {stall }} & =500 \\
\omega_{\text {no-load }} & =50 \\
e_{a} & =100
\end{array}
$$

\therefore Electrical constants

$$
\begin{align*}
& \frac{K_{t}}{R_{a}}=\frac{T_{\text {stall }}}{e_{a}}=\frac{500}{100}=5 \tag{3}\\
& K_{b}=\frac{e_{a}}{\omega_{\text {no-load }}}=\frac{100}{50}=2 \tag{4}
\end{align*}
$$

OPENCOURSEWARE @O.O.
3) Substitute (1), (2), (3) and (4) into :

$$
\frac{\theta_{m}(s)}{E_{a}(s)}=\frac{K_{\tau} /\left(R_{a} J_{m}\right)}{s\left[s+\frac{1}{J_{m}}\left(D_{m}+\frac{K_{\tau} K_{b}}{R_{a}}\right)\right]}=\frac{0.417}{s(s+1.667)}
$$

4) Find $\frac{\theta_{L}(s)}{E_{a}(s)}$ by establishing the ratio of $\frac{\theta_{m}(s)}{\theta_{L}(s)}$

$$
\begin{aligned}
& \frac{\theta_{m}(s)}{\theta_{L}(s)}=\frac{N_{2}}{N_{1}}=\frac{1000}{100}=10 \\
& \text { i.e. } \quad \theta_{m}(s)=10 \theta_{L}(s) \\
& \therefore \frac{\theta_{L}(s)}{E_{a}(s)}=\frac{0.417 / 10}{s(s+1.667)}=\frac{0.0417}{s(s+1.667)}
\end{aligned}
$$

OPENCOURSEWARE (1)

END OF CHAPIER 2

OPENCOURSEWARE @O.®®

REFERENCES:

[1] Norman S. Nise, Control Systems Engineering (6th Edition), John Wiley and Sons, 2011.
[2] Katsuhiko Ogata, Modern Control Engineering (5th Edition), Pearson Education International, Inc., 2010.
[3] Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Pearson Educational International, 2011.
[4] Rao V. Dukkipati, Analysis and Design of Control systems Using MATLAB, Published by New Age International (P) Ltd., Publishers, 2006.
[5] Katsuhiko Ogata, MATLAB For Control Engineers, Pearson Education International, Inc., 2008.

