

MKAJ 1073 ENGINEERING ROCK MECHANICS

EFFECT OF DISCONTINUITY ORIENTATION

ASSOC. PROF MOHD FOR MOHD AMIN | DR RINI ASNIDA ABDULLAH Department of Geotechnics & Transportation, Faculty of Civil Engineering, UTM Johor Bahru

Presence of discontinuities (joints & bedding planes) may affect stability of excavation in rock (tunnel & slope).

Geological information like types of discontinuities and their geometrical data (dip & dip direction) are essential for determining modes of instability & direction of sliding

Orientation of discontinuities means the DIP and STRIKE of discontinuities (weakness planes).

Joint measurement using BRUNTON COMPASS

Take a very strong rock mass, continuous (solid, no weakness planes/discontinuities) & fresh (unweathered, Zone 1)

Note: slope height, $H \approx [UCS/\gamma]$ Parameters UCS & γ are obtained from lab tests on small (intact) rock samples

Can a near vertical slope be excavated in this rock mass, any problem on stability (????)

.... in terms of rock mass properties of the 'ideal' rock, a vertical slope is possible

e.g. for granite (UCS = 120 MPa, γ = 26 kN/m3) slope of few km high is possible !!!

OPENCOURSEWARE

Types of structural discontinuity	Rock types		
	Igneous	Sedimentary	Metamorphic
LARGE-SCALE:			
Fault plane	\checkmark	\checkmark	\checkmark
Joint plane	\checkmark	\checkmark	\checkmark
Bedding plane	-	\checkmark	\checkmark
SMALL-SCALE:			
Lamination	-	\checkmark	-
Foliation	-	-	\checkmark
Microfractures	\checkmark	\checkmark	\checkmark
Voids	-	\checkmark	\checkmark

But rock masses always exhibit discontinuities, more than one types & at different orientations

innovative • entrepreneurial • global

Typical slope face discontinuous, fresh (Grade I) to completely weathered (Grade V) rock

innovative

e entrepreneurial

global

A slope face cut in a fresh (zone 1) and very strong rock mass but, with horizontal bedding planes (discontinuity or weakness plane)

Will the stability of the cut slope be affected by the horizontal bedding planes?

Is there any immediate effect due to rock mass properties & bedding planes?

A slope face cut in fresh & strong rock mass with horizontal bedding planes and inclined fracture planes (e.g. joints)

For slope (A), is the stability being affected by the horizontal bedding & inclined joint planes?

Let propose another slope (B) on the other side of the hill

innovative • entrepreneurial • global

The rock properties & the horizontal bedding planes have no immediate effect on the stability of both SLOPE A and B. However, with respect to the orientation of the inclined joints, SLOPE B is critical

References:

- 1. Brady, B.H.G. and Brown, E.T. (1985), Rock Mechanics for Underground Mining, George Allen & Unwin, London.
- 2. Hoek, E. & Bray, J.W. (1981), Rock Slope Engineering, 3rd ed. Inst. Mining & Metallurgy, London.
- 3. Hudson, J.A., (1989), Rock Mechanics Principles in Engineering Practice, CIRIA, Butterworths.
- 4. ISRM (1981), Rock Characterisation Testing and Monitoring, ISRM Suggested Methods, Commission on testing methods, Int. Society of Rock Mechanics, Brown E.T. (ed.), Pergamon Press, Oxford.