

Digital Electronics (SKEE1223) Digital Integrated Circuits

Muhammad Arif Abd Rahim Muhammad Mun'ím Ahmad Zabidi Ab Hadi Abd Rahman

Faculty of Electrical Engineering

UNIVERSITI TEKNOLOGI MALAYSIA innovative • entrepreneurial • global

UTMONLINELEARNING

Logic Families

Logic Family Overview

- TTL
 - Transistor-Transistor Logic
 - Uses bipolar junction transistors (BJT)
- CMOS
 - Complimentary Metal Oxide Semiconductor
 - Uses Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
- BiCMOS

🐻 UTM

– Combines TTL & CMOS

OUTN

OUTM

TTL vs CMOS

TTL	CMOS
Inexpensive	Dissipates low power.
• Draw a lot of power	Consumption depends on
• Must be supplied with +5	supply voltage, switching
volts	frequency, output load
• Each gate usually uses	and input rise time.
10mW	A typical gate uses only
	10nW.

More on CMOS

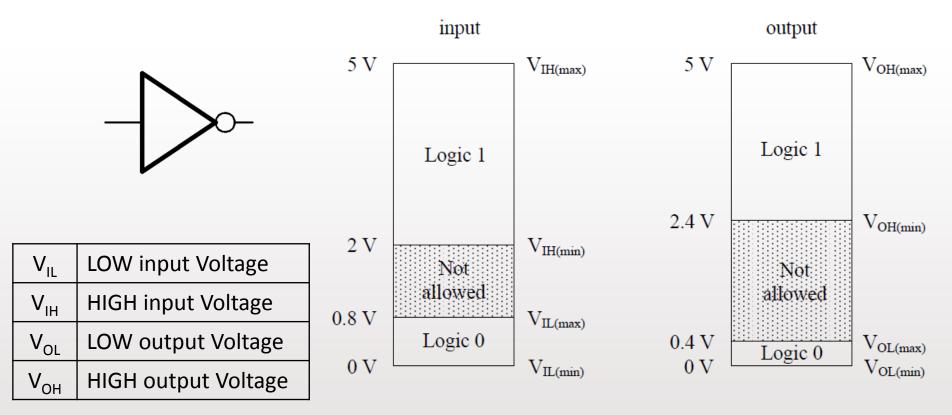
- CMOS components are more expensive but at the system level, CMOS is less expensive. This is because CMOS chips are smaller and require less power regulation.
- CMOS circuits use almost no power at rest. However, current draw increases with switching frequency.
- CMOS component more likely to be damaged due electrostatic discharge.

UTMONLINELEARNING

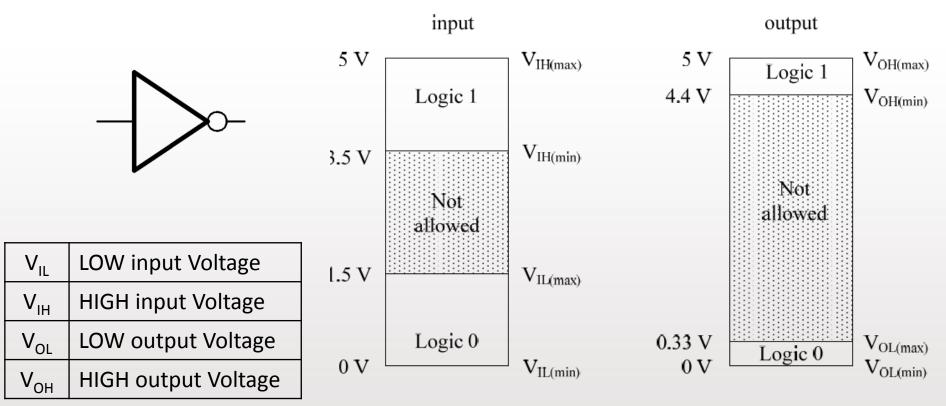
OUTM

(6 = <mark>-</mark> -

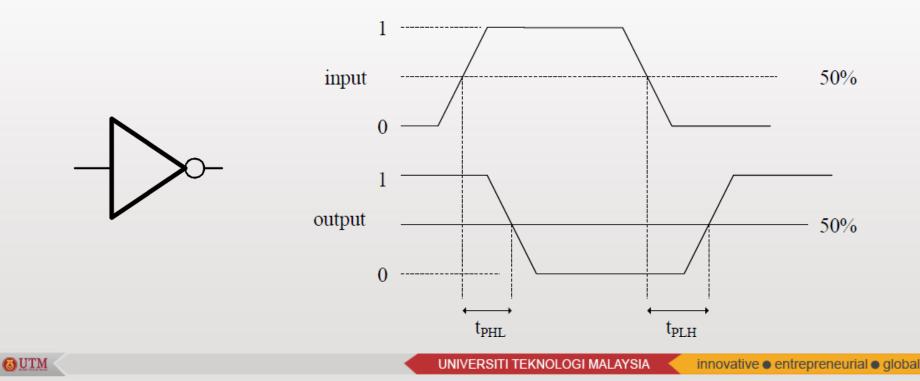
Logic Levels


	TTL	CMOS
Supply voltage	5V (V _{cc})	3 to 15V (V_{DD})
Logic 0	0 to 0.8V	0 to 1/3 V_{DD}
Logic 1	2V to 5V	$2/3 V_{DD}$ to V_{DD}

TTL Logic Levels

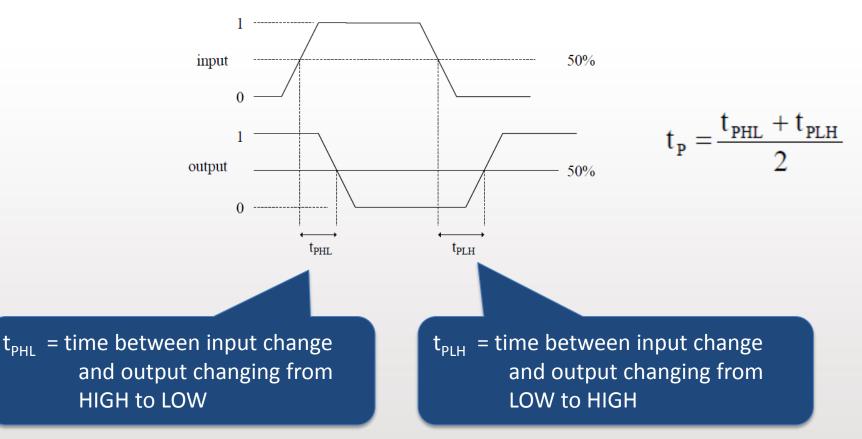


<u>©UTM</u>


CMOS Logic Levels

Propagation Delay

- Logic outputs need time to change from 0 to 1 or 1 to 0.
- Propagation delay is measured at 50%



OUTM

Propagation Delay

TTL Power Dissipation

 $P_D = V_{CC} \times I_{AVE}$ $I_{AVE} = (I_{CCH} + I_{CCL})/2$

where

V_{CC} = supply voltage I_{AVE} = average current I_{CCH} = current in HIGH state I_{CCL} = current in LOW state

Power Dissipation

 $P_{\rm D} = C_L \times (V_{\rm DD}^2/2) \times f$

where

- V_{DD} = supply voltage
- C_L = load capacitance
- f = switching frequency

Power dissipation is dependent on switching activity Power is dissipated only on $0 \rightarrow 1$ transitions

Noise Immunity

- Noise
 - unwanted signal in electrical circuits caused by electromagnetic radiation or power transmission lines
- Noise margin
 - A measure of a circuit's ability to tolerate a certain amount of noise

Noise Immunity

- V_{NH} = high level noise margin
 - $V_{OH(min)} V_{IH(min)}$
- VNL = low level noise margin
 - $V_{IL(max)} V_{OL(min)}$
- Example for 5V CMOS

•
$$V_{\rm NH} = 4.4V - 3.5V = 0.9V$$

Fan-out

- Fan-out is the maximum number of load gate inputs that can be connected without adversely affecting the specific operational characteristics of a gate.
- If a gate has a fan-out of 10, then it can drive 10 other similar gates.
- We use the lower of two fan-outs, LOW and HIGH

```
\begin{aligned} & \mathsf{Fan-out}_{\mathsf{LOW}} = \mathsf{I}_{\mathsf{OL}}(\mathsf{max})/\mathsf{I}_{\mathsf{IL}}(\mathsf{max}) \\ & \mathsf{Fan-out}_{\mathsf{HIGH}} = \mathsf{I}_{\mathsf{OH}}(\mathsf{max})/\mathsf{I}_{\mathsf{IH}}(\mathsf{max}) \\ & \mathsf{Fan-out} = \mathsf{min}(\mathsf{fan-out}_{\mathsf{LOW}}, \mathsf{fan-out}_{\mathsf{HIGH}}) \end{aligned}
```

Thank You!

Helang Ekor Cabang / Black Kite / Milvus migrans di Kuala Gula, Perak

© 2012 Mun'im Zabidi