

Digital Electronics (SKEE1223) Number Systems

Muhammad Arif Abd Rahim Muhammad Mun'ím Ahmad Zabidi Ab Hadi Abd Rahman

Faculty of Electrical Engineering

UNIVERSITI TEKNOLOGI MALAYSIA innovative • entrepreneurial • global

OUTM

(6 **-**

Number Systems for Digital Devices

System	Radix	Digits	Notes				
Decimal	10	0,1,2,3,4,5,6,7,8.9	Human count using 10 fingers				
Binary	2	0,1	Machines only know 2 digits				
Octal	8 0,1,2,3,4,6,7		Shortens long binary sequences by groups of 3				
Hexadecimal	16	0,1,2,3,4,5,6,7,8.9, A, B, C, D, E, F	Shortens long binary sequences by groups of 4				

Why Binary System?

 Digital circuits are made of a series of switches

UTMONLINELEARNING

- Each switch has two states: ON or OFF
- Each state can be represented by a number
 - 1 for "ON"
 - 0 for "OFF"

Binary Weights

a ₇	a ₆	a ₅	a ₄	a ₃	a ₂	a_1	a ₀	a ₋₁	a ₋₂
1	1	1	1	1	1	1	1	1	1
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2-1	2 ⁻²
128	64	32	16	8	4	2	1	0.5	0.25

OUTM

Groups of Bits

Word															
Byte 1 (high)							Byte 0 (low)								
	Nibble 3 Nibble 2				Nibble 1				Nibble 0						
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit Bit Bit Bit			Bit	Bit	Bit	Bit	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\uparrow															
Most									east						
Significant							Significant								
Bit								<i>.</i>	Bit						
(MSB) (L										.SB)					

Decimal to Binary

Binary Weights

a ₇	a ₆	a ₅	a ₄	a ₃	a ₂	a_1	a ₀	a ₋₁	a ₋₂
1	1	1	1	1	1	1	1	1	1
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2-1	2 ⁻²
128	64	32	16	8	4	2	1	0.5	0.25

Octal Number System

To shorten long binary numbers
- 0-7

Octal to Decimal

Hexadecimal Number System

Sometimes called hex numbers

UTMONLINELEARNING

- To shorten binary numbers stored in groups of 4 – 0-9, A-F
- Base-16 numbers can be written in two formats:
 24₁₆ or 24h
- Base-16 also means that there are 16 valid numbers. Starting with zero they are:

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Where:

- A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

Hexadecimal Weighting

Binary to Hexadecimal

UTMONLINELEARNING

