Digital Electronics (SKEE1223) Number Systems

Muhammad Arif Abd Rahim Muhammad Mun'ím Ahmad Zabidi Ab Hadi Abd Rahman

Faculty of Electrical Engineering

Number Systems for Digital Devices

System	Radix	Digits	Notes
Decimal	10	$0,1,2,3,4,5,6,7,8.9$	Human count using 10 fingers
Binary	2	0,1	Machines only know 2 digits
Octal	8	$0,1,2,3,4,6,7$	Shortens long binary sequences by groups of 3
Hexadecimal	16	$0,1,2,3,4,5,6,7,8.9$, A, B, C, D, E, F	Shortens long binary sequences by groups of 4

Why Binary System?

- Digital circuits are made of a series of switches
- Each switch has two states: ON or OFF
- Each state can be represented by a number
- 1 for "ON"
- 0 for "OFF"

Binary Weights

a_{7}	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	a_{-1}	a_{-2}
1	1	1	1	1	1	1	1	1	1
\downarrow									
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}
128	64	32	16	8	4	2	1	0.5	0.25

Groups of Bits

Word															
Byte 1 (high)								Byte 0 (low)							
Nibble 3				Nibble 2				Nibble 1				Nibble 0			
$\begin{aligned} & \hline \text { Bit } \\ & 15 \end{aligned}$	Bit 14	$\begin{aligned} & \text { Bit } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { Bit } \\ & 10 \end{aligned}$	$\begin{gathered} \hline \mathrm{Bit} \\ 9 \end{gathered}$	$\begin{gathered} \hline \mathrm{Bit} \\ 8 \end{gathered}$	$\begin{gathered} \hline \mathrm{Bit} \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 5 \end{gathered}$	$\begin{gathered} \hline \mathrm{Bit} \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 0 \end{gathered}$
\uparrow 俍 \uparrow															
Most Least Significant Significant															
BitBit															

Decimal to Binary

Binary Weights

a_{7}	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	a_{-1}	a_{-2}
1	1	1	1	1	1	1	1	1	1
\downarrow									
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}
128	64	32	16	8	4	2	1	0.5	0.25

Octal Number System

- To shorten long binary numbers
- 0-7

Octal to Decimal

| 7 | 1 | 2 | 6 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hexadecimal Number System

- Sometimes called hex numbers
- To shorten binary numbers stored in groups of 4
- 0-9, A-F
- Base-16 numbers can be written in two formats:
- 24_{16} or $24 h$
- Base-16 also means that there are 16 valid numbers. Starting with zero they are:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Where:
$-A=10, B=11, C=12, D=13, E=14, F=15$

Hexadecimal Weighting

A	2	F	7	

Binary to Hexadecimal

