

ONLINE LEARNING

PAVEMENT THICKNESS DESIGN ATJ 5/85 (revision 2013) (Manual for the Structural Design of Flexible Pavement)

Mr. Che Ros Ismail | Dr. Norhidayah Abdul Hassan

Faculty of Civil Engineering, UTM

UNIVERSITI TEKNOLOGI MALAYSIA

innovative • entrepreneurial • global

ATJ 5/85 (Pindaan 2013) JKR 21300-0041-13

KERAJAAN MALAYSIA

MANUAL FOR THE STRUCTURAL **DESIGN OF FLEXIBLE PAVEMENT**

©2013 Jabatan Kerja Raya Malaysia. Hak Cipta Terpelihara.

Tidak dibenarkan mengeluarkan mana-mana bahagian artikel, ilustrasi dan isi kandungan buku ini dalam apa jua bentuk dan dengan apa jua cara sama ada secara elektronik, mekanikal, salinan, rakaman atau cara lain sebelum mendapat keizinan bertulis daripada penerbit.

Manual For The Structural Design of Flexible Pavement

Jabatan Kerja Raya Cawangan Kejuruteraan Jalan & Geoteknik

Ketua Pengarah Kerja Raya Jabatan Kerja Raya Malaysia Jalan Sultan Salahuddin 50582 Kuala Lumpur

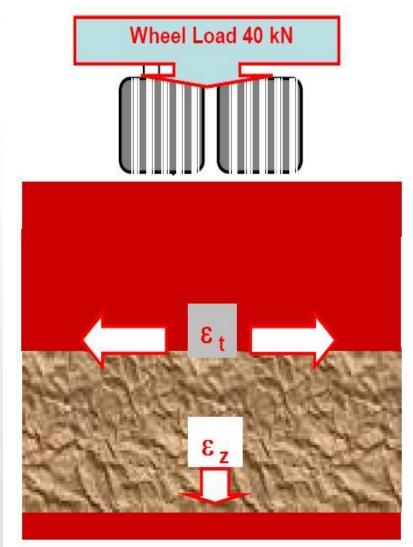
UNIVERSITI TEKNOLOGI MALAYSIA

ATJ 5/85 (Pindaan 2013)

MANUAL FOR THE STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT

Procedure can be used to design:

- 1. New flexible for low volume roads, consisting of unbound or new cement stabilized granular materials
- 2. New flexible and semi flexible pavements containing one or more bound layers
- 3. New flexible and semi-flexible heavy duty pavements for severe loading conditions


Data required:

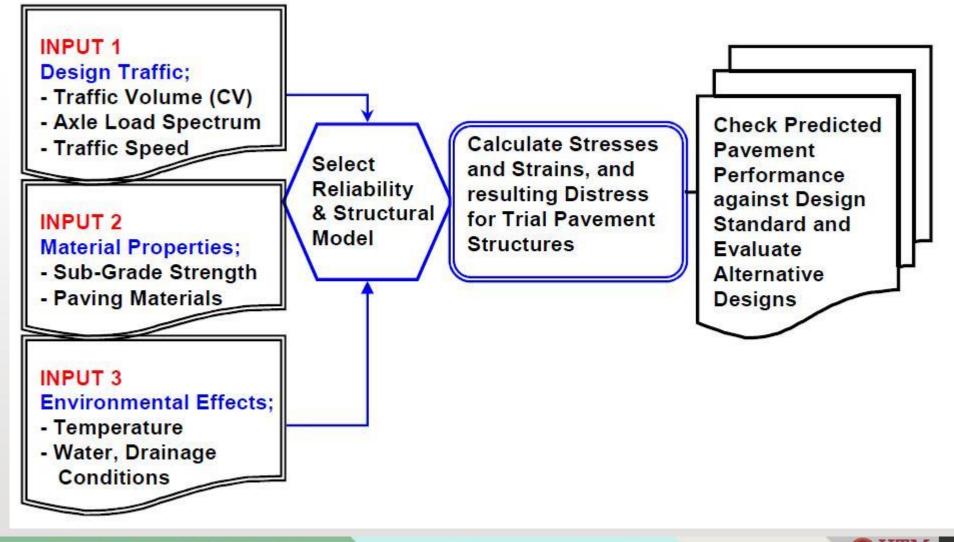
- 1. Type and volume of commercial vehicles
- 2. Design life
- 3. Sub-grade type and strength
- 4. Type and properties of paving materials
- 5. Environment which pavement will be exposed to

Criteria

Bituminous Wearing Course Durability, Safety (Skid Resistance, Smoothness), Strength

Bituminous Binder/Base Course Stiffness (Load Bearing), Fatigue Horizontal Tensile Strain at Bottom of Bound Layer

Granular Base and Sub-Base (Additional Load Distribution)


Vertical Compressive Strain on Sub-Grade

<u>OUTM</u>

Key elements of a systematic pavement design procedure

OUTM

Required Traffic Data

- 1. Number of commercial vehicles during Year 1 of Design Period, which is the expected year of completion of construction.
- 2. Vehicle class and axle load distribution.
- 3. Directional and lane distribution factors.
- 4. Traffic growth factors.

Design Procedure

- 1. From traffic count, determine:
 - ADT (24 hours per day, If traffic count covers time period of 0600 to 2200 hours, multiply the count with 1.2)
 - % P_{CV} with un-laden weight > 1.5 tons (P_{CV}) and break down into vehicle categories.
 - Traffic Growth factor (r) for CV
- 2. From geometric design number of lanes and terrain condition (*L and T factors*)

3. Design Period

- 10 years for low volume and rural road
- 20 years for high volume and urban road

4. Design traffic (1st year of design period)

 $ESAL_{Y1} = ADT \times 365 \times P_{CV} \times LEF \times L \times T$

ESAL_{Y1} = number of ESALs for base year (design lane) ADT = Average Daily Traffic (one way)

P_{CV} = Percentage of CV (un-laden weight > 1.5 tons)

- LEF = Vehicle Load Equivalent Factor (including Tire Factor, or use 3.7)
- L = Lane Distribution Factor
- T = Terrain Factor

Number of lanes	Lane distribution		
(in ONE direction)	factor, L		
One	1.0		
Two	0.9		
Three or more	0.7		

Type of Terrain	Terrain factor, T	
Flat	1.0	
Rolling	1.1	
Mountainous/steep	1.3	

If traffic distribution by vehicle type is available: ESAL_{Y1} = [ADTcv1 x LEFcv1 + ADTcv2 x LEFcv2 +...+ ADTcv3 x LEFcv3] x 365 x L x T

5. Design Traffic (Number of ESALs) for the Design Period

 $ESAL_{DES} = ESAL_{Y1} \times [(1 + r)^n - 1)]/r$

ESAL_{DES} = design traffic for the design lane in one direction

r = annual traffic growth rate factor for design period

n = number of years in design period

LEF for various vehicle class

Vehicle		
HPU Class Designation	Class	Load Equivalence Factor (LEF)
Cars and Taxis	С	0
Small Lorries and Vans (2 Axles)	CV1	0.1
Large Lorries (2 to 4 Axles)	CV2	4.0
Articulated Lorries (3 or more Axles)	CV3	4.4
Buses (2 or 3 Axles)	CV4	1.8
Motorcycles	MC	0
Commercial Traffic (Mixed)	CV%	3.7

6. Determine traffic category

Traffic Category	Design Traffic (ESAL x 10 ⁶)	Probability (Percentile) Applied to Properties of Sub-Grade		
Т 1	<u>≤</u> 1.0	≥ 60%		
Т 2	1.1 to 2.0	≥ 70%		
Т 3	2.1 to 10.0	<u>≥ 85%</u>		
Т 4	10.1 to 30.0	≥ 85%		
Т 5	>30.0	≥ 85%		

Normal distribution with single tailed analysis, the following normal deviate values shall apply:

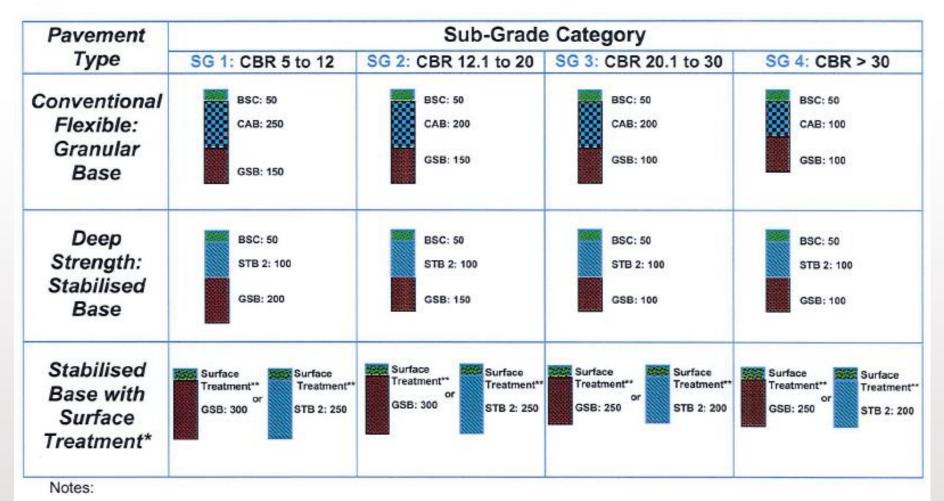
- 60% Probablility: Mean 0.253 x STD
- •70% Probablility: Mean 0.525 x STD
- 85% Probablility: Mean 1.000 x STD

<u>OUTM</u>

7. SG properties and categories

- Min 5% CBR for T1- T5
- If not, at least 0.3 meter of SG shall be replaced or stabilized to ensure the minimum value is met.
- Large volume traffic T4 and T5, min CBR 12%

Sub-Grade category	CBR (%)	Elastic Modulus (MPa)	
		Range	Design Input Value
SG1	5 to 12	50 to 120	60
SG2	12.1 to 20	80 to 140	120
SG3	20.1 to 30	100 to 160	140
SG4	> 30	120 to 180	180



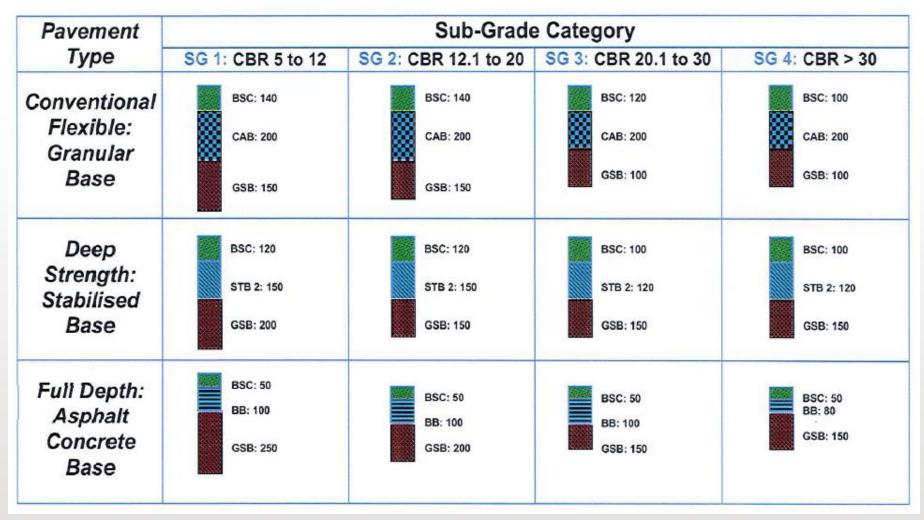
- 8. Determine T and S, choose from catalogue
- 3 types of pavement considered:
 - 1. Conventional flexible pavement with granular base.
 - 2. Deep-strength flexible (composite) pavement with bituminous surface course(s) and a base stabilized with Portland cement, bituminous emulsion, or a combination of both.
 - 3. Full-depth asphalt pavement with bituminous base course

T1 : < 1 million ESALs

* Full Depth Asphalt Concrete Pavement is not recommended for this Traffic Category.

** Single or Double Layer Chip Seal or Micro-Surfacing.

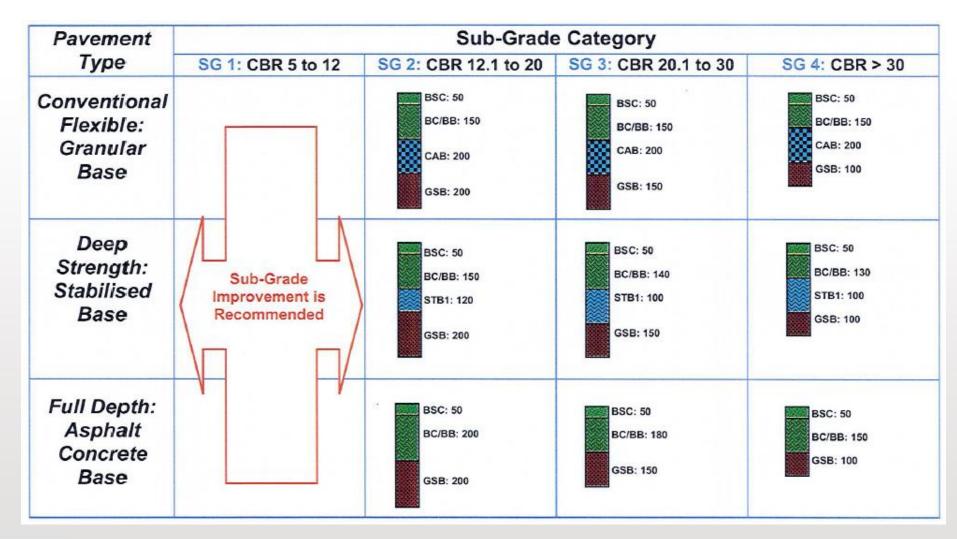
UNIVERSITI TEKNOLOGI MALAYSIA


UTM

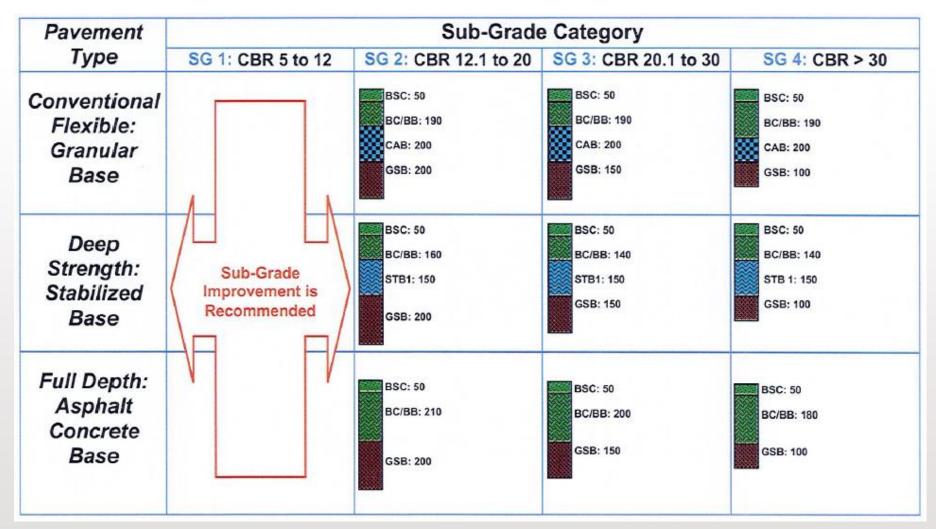
OUTM

T2:1-2 million ESALs

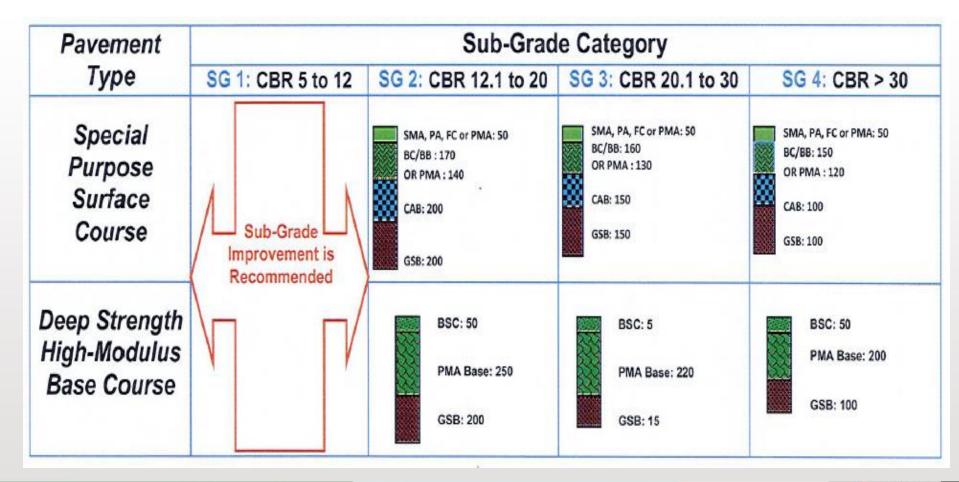
T3: 2 - 10 million ESALs


Pavement	Sub-Grade Category			
Туре	SG 1: CBR 5 to 12	SG 2: CBR 12.1 to 20	SG 3: CBR 20.1 to 30	SG 4: CBR > 30
Conventional Flexible: Granular Base	BSC: 50 BC: 130 CAB: 200 GSB: 200	BSC: 50 BC: 130 CAB: 200 GSB: 200	BSC: 50 BC: 130 CAB: 200 GSB: 150	BSC: 50 BC: 130 CAB: 200 GSB: 100
Deep Strength: Stabilised Base	BSC: 50 BC: 100 STB 1: 150 GSB: 200	BSC: 50 BC: 100 STB 1: 150 GSB: 150	BSC: 50 BC: 100 STB 1: 100 GSB: 150	BSC: 50 BC: 100 STB 1: 100 GSB: 100
Full Depth: Asphalt Concrete Base	BSC: 50 BC/BB: 160 GSB: 200	BSC: 50 BC/BB: 150 GSB: 150	BSC: 50 BC/BB: 130 GSB: 150	BSC: 50 BC/BB: 130 GSB: 100

T4: 10 – 30 million ESALs



OUTM


T5 : > 30 million ESALs

T5 : > 30 million ESALs (Polymer Modified Asphalt)

Conceptual outline of Pavement Structure

Pavement	Traffic Category (based on million ESALs @ 80 kN)				
Structure	1	1 to 2	2.1 to 10	10.1 to 30	> 30
	T1	T2	T3	T4	T5
Combined					24 cm
thickness of				20 cm	
bituminous layer			18 cm		
		10 cm			
	5 cm				
Crushed					
Aggregate Road					
base + sub-base					
for Sub-grade					
CBR of:					
5 to 12	25+15 cm	20+15 cm	20+20 cm	NR	NR
12.1 to 20	20+15 cm	20+15 cm	20+20 cm	20+20 cm	20+20 cm
201. to 30	20+10 cm	20+10 cm	20+15 cm	20+15 cm	20+15 cm
> 30	10+10 cm	20+10 cm	20+10 cm	20+10 cm	20+10 cm

Other options for Low Volume Roads

Sub-Grade	ESALs (x 1000) over Design Period			
(CBR %)	≤ 100	100 to 500	500 to 1000	
5 to 12	40 mm BSC	50 mm BSC	50 mm BSC	
	200 mm CAB	200 mm CAB	250 mm CAB	
	150 mm GSB	150 mm GSB	150 mm GSB	
■ 12.1 to 20	40 mm BSC 200 mm CAB	50 mm BSC 200 mm CAB	50 mm BSC 200 mm CAB	
	100 mm GSB	100 mm GSB	150 mm GSB	
■ ≥ 20	40 mm BSC	50 mm BSC	50 mm BSC	
	200 mm CAB	200 mm CAB	200 mm CAB	
	100 mm GSB	100 mm GSB	100 mm GSB	

WORKED EXAMPLE

Design a road pavement for a 2-lane highway with an average daily traffic of 2700 vehicles, 16% of which are commercial vehicles with an un-laden weight > 1.5 tons, traffic growth rate 4% per annum and rolling terrain.

Subgrade CBR: Mean =18.5% with Standard Deviation of 4.4%

WORKED EXAMPLE

Step 1: Design Input

- Traffic 1350 one way
- P_{CV} = 16 % (assume LEF = 3.7 since no breakdown of vehicle type)
- Lane Distribution Factor, L = 1.0 (one lane in one direction)
- Terrain Factor, T = 1.1 (rolling)
- Design Life, n = 20 years
- Annual Traffic Growth, r = 4.0%

OUTM

WORKED EXAMPLE

Step 2: Determine Traffic Category

- ESAL_{Y1} (Base Year) = ADT x 365 x P_{CV} x LEF x L x T
 - = 1350 x 365 x 0.16 x 3.7 x 1.0 x 1.1

= 0.321 million

Design Traffic over 20 Years;

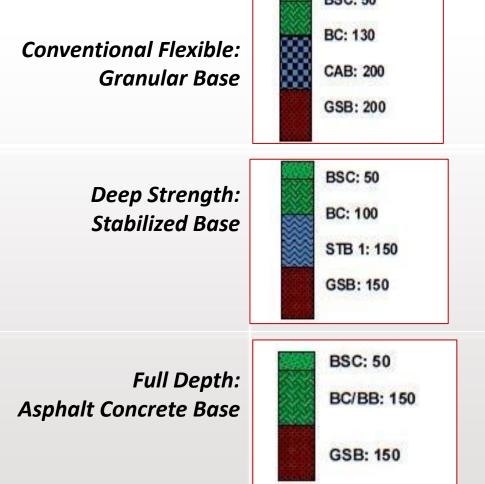
- $\frac{\text{ESAL}_{\text{DES}} = \text{ESAL}_{Y1} \times [(1 + 0.04)^{20} 1)]/0.04}{= 0.321 \times 29.78}$
 - = 9.56 million (Traffic Category T3)

WORKED EXAMPLE

Step 3: Determine Sub-Grade Category

- CBR Mean =18.5%
- CBR Standard Deviation = 4.4%
- Since T3; Probability 85% (Normal Deviate = 1.00)
- Characteristic CBR value used for design;

= 18.5% – 4.4%


= 14.1% (Sub-Grade Category SG2)

WORKED EXAMPLE

Step 4: Select pavement structures from Catalogues (T3, SG2)

UNIVERSITI TEKNOLOGI MALAYSIA

innovative • entrepreneurial • global

Thank you for your attention

e-mail your questions to:

cheros@utm.my

or <u>cheros1964@gmail.com</u>

