

ONLINE LEARNING

STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT

Standard Design Procedure

Mr. Che Ros Ismail | Dr. Norhidayah Abdul Hassan

Faculty of Civil Engineering, UTM

UNIVERSITI TEKNOLOGI MALAYSIA

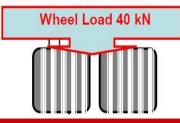
innovative • entrepreneurial • global

STRUCTURAL DESIGN OF FLEXIBLE PAVEMENT

- 1. Elements of a Flexible Pavement Structure
- 2. Factors to be Considered in the Design
- 3. Methods of Design for New Pavements
- 4. Malaysian Design Methods

UNIVERSITI TEKNOLOGI MALAYSIA

innovative entrepreneurial eglobal



INTRODUCTION

Aim:

to design a structure that will ensure that the transmitted stresses are sufficiently reduced and do not exceed the capacity of the underlying

subgrade

Bituminous Wearing Course Durability, Safety (Skid Resistance, Smoothness), Strength

Bituminous Binder/Base Course Stiffness (Load Bearing), Fatigue Horizontal Tensile Strain at Bottom of Bound Layer

Granular Base and Sub-Base (Additional Load Distribution)

Vertical Compressive Strain on Sub-Grade

ELEMENTS OF A FLEXIBLE PAVEMENT

uppermost layer, provide safe & comfortable riding surface, withstand traffic stresses, protect lower layers, impermeable and flexible, may consist of BC and WC, HMA layer.

specified material, main load spreading layer, provide pavement with added stiffness and resistance to fatigue

SUB BASE

WEARING COURSE

BINDER COURSE

ROAD BASE

secondary load spreading layer, prevent infiltration of sub-grade, construction platform, drainage layer

SUB GRADE

upper layer of natural soil or fill, support load transmitted from overlaying layers

FACTORS TO BE CONSIDERED IN THE DESIGN

- 1. Failure mechanism two of concern are permanent deformation and cracking
 - rut (accumulation of permanent strain water ponding)
 - crack (fracture failure under repeated or fluctuating stress – fatigue failure in the bituminous layer)
- 2. Traffic loading pavement design must account for cumulative traffic loading during design life
 - a. Tire loads & pressure contact load and area
 - **b.** Axle & wheel configuration no of contact points
 - c. Load repetition cumulative
 - d. Traffic distribution lane, direction
 - e. **Speed** loading period (slow, climbing).....

FACTORS TO BE CONSIDERED IN THE DESIGN

- f. ESAL convert wheel loads to standard loads std load = 80 kN, 8160 kg, or 18000 lb load equivalency factor, e = (L/Ls)ⁿ consider only commercial vehicles, CV (<u>BTM > 1.5 ton</u>, 3 ton for RN31)
- 3. Environmental temperature (asphalt brittle/soft) and moisture (safety of users and pavement)

Classification of CV ATJ5/85 (2013)

Vehicle		
HPU Class Designation	Class	Load Equivalence Factor (LEF)
Cars and Taxis	с	0
Small Lorries and Vans (2 Axles)	CV1	0.1
Large Lorries (2 to 4 Axles)	CV2	4.0
Articulated Lorries (3 or more Axles)	CV3	4.4
Buses (2 or 3 Axles)	CV4	1.8
Motorcycles	MC	0
Commercial Traffic (Mixed)	CV%	3.7

Cars and Taxis – C (0.0)

Small Lorries and Van – CV1 (0.1)

Large Lorries (2-4 axles) - CV2 (4.0)

OUTM

Articulated Lorries (3 or more axles) – CV3 (4.4)

UNIVERSITI TEKNOLOGI MALAYSIA

innovative entrepreneurial global

Buses (2 or 3 axles) - CV4 (1.8)

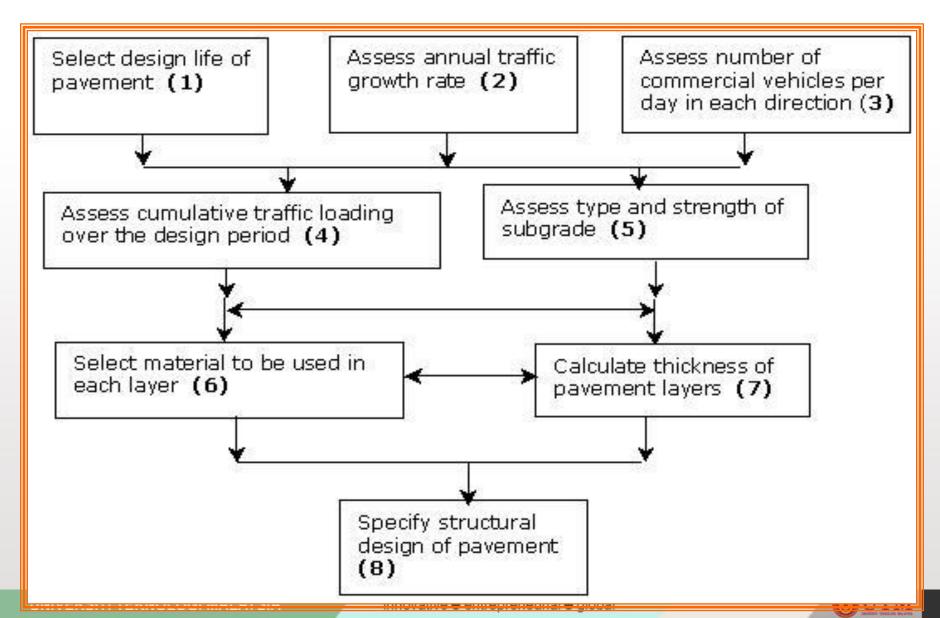
Motorcycles – MC (0.0)

UNIVERSITI TEKNOLOGI MALAYSIA

innovative • entrepreneurial • global

METHODS OF DESIGN FOR NEW PAVEMENTS

Objective – to determine the number, material composition, and thickness of different layers that will be suitable in a specific environment and able to sustain the anticipated traffic loading


Three methods:

- 1. Precedent rule-of-thumb, std thickness for particular road classification
- 2. Empirical soil classification or strength using experience, experimentation, or both
- 3. Theoretical/semi mechanistic, based on mechanical model, relate pavement parameters (stress, strains, deflections) to physical causes (loads, material properties) using mathematical model

DESIGN PROCESS

MALAYSIAN DESIGN METHODS

Adopt design method based on AASHTO Guide, and catalogue of structure method:

- Arahan Teknik Jalan 5/85 based on AASHO road test, developed using multi-layered elastic theory. Suitable for major roads with heavy and medium traffic
- 2. Overseas Road Note 31 based on research in tropical and sub-tropical countries. Design to cater traffic up to 30MSA in one direction
- 3. Arahan Teknik Jalan 5/85 (revision 2013) later

PAVEMENT THICKNESS DESIGN ATJ 5/85

Data required:

- 1. Design period, n suggests 10 years
- 2. Class of roads
- 3. Initial Average Daily Traffic ADT
- 4. Percentage of Commercial Vehicle Pc
- 5. Average annual traffic growth r
- 6. Sub-grade strength CBR
- 7. Terrain condition

18

PAVEMENT THICKNESS DESIGN ATJ 5/85

Design Procedure:

- 1. Calculate Vo = ADT x (1/2) x 365 x (Pc/100)
- 2. Calculate Vc= Vo $[(1 + r)^n 1] / r$
- Calculate cumulative ESA, ESA = Vc x e (Table 4.1 or e = 2.52)
- 4. Check daily capacity (Table <u>4.2</u>, <u>4.3</u>, <u>4.4</u>)
- 5. Determine sub-grade CBR
- 6. Obtain equivalent thickness, TA' from <u>nomograph</u>
- Calculate thickness for each layer (Table <u>4.5</u>, <u>4.6</u>, <u>4.7</u>)
 - $TA' = S_N = a_1D_1 + a_2D_2 + ... + a_nD_n$
- 8. <u>Sketch</u> the designed thickness

EQUIVALENCE FACTOR

Percentage of selected heavy goods vehicles	0 - 15 %		16 - 50 %	51 - 100 %
Type of road	Local	Trunk		
Equivalence factor, e	1.2	2.0	3.0	3,7

MAXIMUM HOURLY CAPACITY

Road type	Passenger vehicle unit per hour
Multilane	2000 per lane
2 lane (both ways)	2000 total for both ways
3 lane (both ways)	4000 total for both ways

REDUCTION FACTOR

Carriageway		Shoulder v	Shoulder width (m)	
width (m)	2.00	1.50	1.25	1.00
7.5	1.00	0.97	0.94	0.90
7.0	0.88	0.86	0.83	0.79
6.0	0.81	0.78	0.76	0.73
5.0	0.72	0.70	0.67	0.64

UNIVERSITI TEKNOLOGI MALAYSIA

21

MTU

© UTM

TERRAIN FACTOR

Type of terrain	Factor	
Flat	$T = 100/(100 + P_c)$	
Rolling	$T = 100/(100 + 2P_c)$	
Mountainous	$T = 100/(100 + 5P_c)$	

LAYER COEFFICIENTS

Component	Type of Layer	Property	Coefficients
Wearing and Binder Course	Asphaltic Concrete	2 X/2 103	1.00
	Dense Bituminous Macadam	Type 1: Stability > 400 kg	0.80
	16 - 57.65975 NJ.	Type 2: Stability > 300 kg	0.55
Road Base	Cement stabilized	Unconfined Compressive strength (7 days) 30 - 40 kg/cm ²	0.45
	Mechanically stabilized crushed aggregate	CBR ≥ 80 %	0.32
	Sand, laterite, etc.	CBR <u>></u> 20 %	0.23
Sub-base	Crushed aggregate	CBR <u>></u> 30 %	0.25
	Cement stabilized	CBR <u>></u> 60 %	0.28

UNIVERSITI TEKNOLOGI MALAYSIA

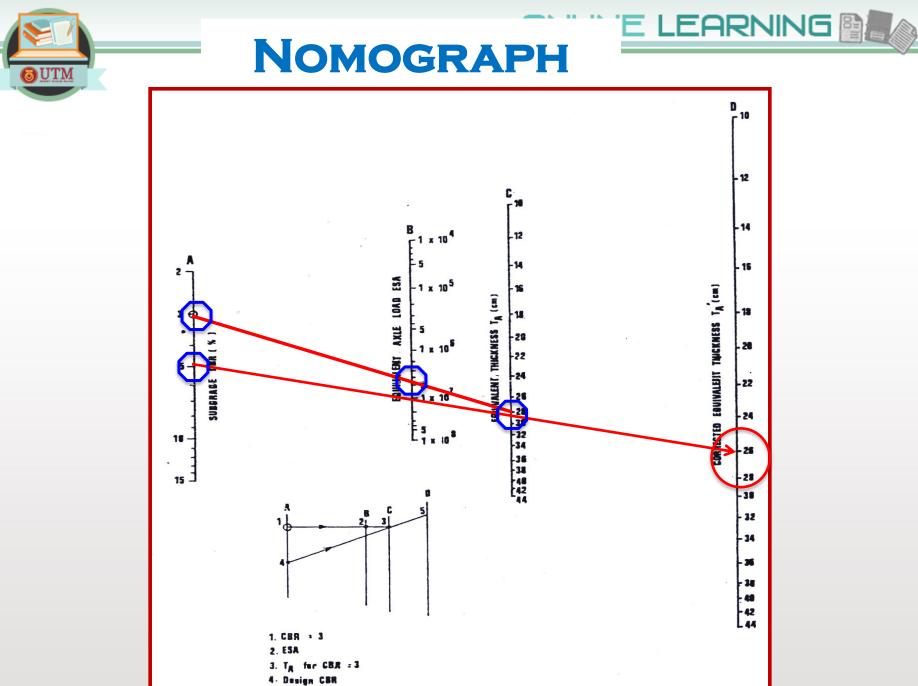
23

STANDARD AND CONSTRUCTION THICKNESS

Type of Layer Wearing Course		Standard Thickness (cm)	One Layer Lift (cm) 4 - 5	
		4 - 5		
Binder Course		5 - 10	5 - 10	
Road Base	Bituminous	5 - 20	5 - 15	
	Wet Mix	10 - 20	10 - 15	
	Cement Stabilized	10 - 20	10 - 20	
Sub-base	Granular	10 - 30	10 - 20	
	Cement Stabilized	15 - 20	10 - 20	

UNIVERSITI TEKNOLOGI MALAYSIA

JUTM



MINIMUM THICKNESS OF BITUMINOUS LAYER

TA'(cm)	Total Thickness of bituminous Layer (cm)
< 17.5	5.0
17.5 - 22.5	10.0
23.0 - 29.5	15,0
> 30.0	17.5

5. Required TA

UNIVERSITI TEKN

OUTM

PAVEMENT THICKNESS DESIGN ATJ 5/85

In case of varying CBR for 1m depth of sub-grade, mean CBR is determined as follows:

 $CBR_m = [(h_1 CBR_1^{1/3} + h_2 CBR_2^{1/3} + ... + h_n CBR_n^{1/3}) / (1000)]^3$

where:

PAVEMENT THICKNESS DESIGN ATJ 5/85

Example:

Determine the mean CBR for this subgrade

CBR = 30 %	<mark>h = 350 mm</mark>
CBR = 8 %	h = 350 mm
CBR = 5 %	<mark>h = 300 mm</mark>

 $CBR_{m} = [(350 \times 30^{1/3} + 350 \times 8^{1/3} + 300 \times 5^{1/3}) / (1000)]^{3}$ = 12%

PAVEMENT THICKNESS DESIGN ROAD NOTE 31

- Designed for tropical and sub-tropical countries to carry up to 30M CSA
- Heavy vehicle > 3 ton
- Equivalence: e = (L/Ls)^{4.5}

Design procedure:

- 1. Estimate CSA for design life >>> T (<u>Table 3.8</u>)
- 2. Assess sub-grade strength >>> S (Table 3.9, <u>3.10</u>)
- 3. Select combination of <u>material</u> and thickness from structure <u>catalogues</u> based on T and S

OUTM

TRAFFIC CLASSES

Traffic classes	Range (10 ⁶ ESA)
Τ1	< 0.3
T2	0.3 - 0.7
ТЗ	0.7 - 1.5
T4	1.5 - 3.0
Τ5	3.0 - 6.0
Т6	6.0 - 10
Τ7	10 - 17
Т8	17 - 30

UNIVERSITI TEKNOLOGI MALAYSIA

OUTM

30

SUB-GRADE CLASSES

Class	Range (CBR %)	
S1	2	
S2	3 - 4	
S3	5 - 7	
S4	8 - 14	
S5	15 - 29	
S6	30+	

ESTIMATION OF SUB-GRADE CLASSES

Depth of water table from Non-plastic formation (m) sand	Subgrade strength class				
	Sandy clay PI = 10	Sandy clay PI = 20	Silty clay PI = 30	Heavy clay PI > 40	
0.5	S4	S4	S2	S2	S1
1	S5	S4	S3	S2	S1
2	S5	S5	S4	S3	S2
3	S6	S5	S4	S3	S2

MATERIAL DEFINITION

Double surface dressing, SD								
Flexible bituminous surfacing								
Bituminous surface (Wearing and binder course)								
Road base, RB								
Granular road base, GB1 – GB3								
Granular sub-base, GS								
Granular capping layer or selected subgrade fill, GC								
Cement or lime stabilized road base 1, CB1								
Cement or lime stabilized road base 2, CB2								
Cement or lime stabilized sub-base, CS								

ONLINE LEARNING

GRANULAR BASE, SURFACE DRESSING

	T1	T2	T3	T4	T5	T6	T7	T8
	SD	SD	SD	SD	SD	SD		
S1	150	150	200	200	200	225		
	175 300	225 300	200 300	250 300	300 300	325 300		
	SD	SD	SD	SD	SD	SD		
S2	150	200 150	200	200	200	225 300		
	150 200	200 200	175 200	225	275 200	300 200		
S3	SD	SD	SD	SD	SD	SD		
	200 £	150 250	200 225	200	200 325	225 25 250		
S4	SD	SD	SD	SD	SD	SD		
	150	150	200	200	200	225		
<u> </u>	125	175	150	200	250	275		
S5	SD	SD	SD	SD	SD	SD		
	150 150 100	150 150 100 100	175 100 100	200	225	250 250 250		
S6	SD 150	SD 150	SD 175	SD 200	SD 225	SD 250		

ONLINE LEARNING

GRANULAR BASE, STRUCTURED SURFACE

	T1	T2	Т3	T4	T5	T6	T7	T8
S1						100 200 225 350	125 225 225 350	150 250 250 350
S2						100 200 225 200	125 225 225 225 200	150 250 250 200
S3						100 200 250	125 225 250	150 250 275
S4						100 200 175	125 225 175	150 250 175
S5						100 200 100	125 225 100	150 250 100
S6						100 200	125 225	150 250

UNIVERSITI TEKNOLOGI MALAYSIA

innovative entrepreneurial global

Thank you for your attention

e-mail your questions to:

cheros@utm.my

or <u>cheros1964@gmail.com</u>

