

FIELD DENSITY TEST Sand Replacement Method (aka Sand Cone)

Mr. Che Ros Ismail | Dr. Norhidayah Abdul Hassan

Faculty of Civil Engineering, UTM

UNIVERSITI TEKNOLOGI MALAYSIA

innovative • entrepreneurial • global

ONLINE LEARNING 🖺

FDT – On site Procedure

- 1. Leveled the pre-compacted road layer
- 2. Place and secure the plate on the leveled surface
- 3. Dig the soil according to plate opening and put it in the tray
- 4. Weight the moist soil from hole
- 5. Take a small sample of soil for moisture content determination
- 6. Weight the sand cone apparatus before test
- 7. Invert and place the apparatus over the hole, open the valve and let the sand flow out until it stop flowing
- 8. Weight the sand cone apparatus after test
- 9. Determine the mass of sand required to fill the hole

10. Determine the Degree of compaction (DOC)

innovative entrepreneurial eglobal

Derivation and Calculation

Note:

- 1. Density (ρ_s) and mass of sand to fill the cone (m_{sc})should have been pre-determined and calibrated in the laboratory
- 2. MDD and OMC for the road layer material has been determined through laboratory compaction

Derivation

Density Ms th $f_{c} =$ 6

Derivation

Worked Example

A field density test (using sand replacement method) was carried out on a compacted road base layer. The following results were recorded:

Mass of sand in the bottle (before test)		6655 g
Mass of sand in the bottle (after test)		2965 g
Mass of moist material from test hole		4315 g
Moisture content sample of this material:		
(original mass)	312.3 g	
(final mass)	286.8 g	

Knowing the density of sand is 1252 kg/m³, mass of sand in cone 1275 g, and MDD of 2.220 Mg/m³, determine the relative compaction (DOC) of the road base.

OUTM

Given Data:

 $\begin{array}{ll} M_{sb} &= 6655 \ g \\ M_{sa} &= 2965 \ g \\ M_{msh} &= 4315 \ g \\ M_{sc} &= 1275 \ g \\ \rho_s &= 1252 \ kg/m^3 \\ MDD &= 2220 \ kg/m^3 \end{array}$

Moisture content determination:

moist mass = 312.3 g dry mass = 286.8 g

Solution

ρ_b = [4315 / (6655 – 2965 - 1275)] x 1252 kg/m³ = 2237 kg/m³

```
mc = (312.3 - 286.8) / 286.8
= 0.088
```

```
ρ<sub>d</sub> = 2237 / (1+0.088)
= 2056 kg/m<sup>3</sup>
```

```
DOC = [2056 / 2220] x 100%
= 92.6% (less than 95%, not properly compacted)
```


Thank you for your attention

e-mail your questions to:

cheros@utm.my

or <u>cheros1964@gmail.com</u>

