

FIELD DENSITY TEST Sand Replacement Method (aka Sand Cone)

Mr. Che Ros Ismail | Dr. Norhidayah Abdul Hassan

Faculty of Civil Engineering, UTM

FDT - On site Procedure

1. Leveled the pre-compacted road layer
2. Place and secure the plate on the leveled surface
3. Dig the soil according to plate opening and put it in the tray
4. Weight the moist soil from hole
5. Take a small sample of soil for moisture content determination
6. Weight the sand cone apparatus before test
7. Invert and place the apparatus over the hole, open the valve and let the sand flow out until it stop flowing
8. Weight the sand cone apparatus after test
9. Determine the mass of sand required to fill the hole
10. Determine the Degree of compaction (DOC)

(ㅇ)UTMNLINE LEARNING

\qquad

Derivation and Calculation

Note:

1. Density $\left(\rho_{s}\right)$ and mass of sand to fill the cone $\left(m_{s c}\right)$ should have been pre-determined and calibrated in the laboratory
2. MDD and OMC for the road layer material has been determined through laboratory compaction

Derivation

Derivation

$$
m_{s b}-m_{s a}=m_{s c}+m_{s h}
$$

Derivation

$$
\begin{aligned}
& \text { Density }=\frac{m}{t /} \\
& P_{s}^{2}=\frac{m_{s}}{\forall_{s} ;} ; \quad \forall_{s}=\forall_{h} \\
& \forall_{s}=\frac{m_{s}}{\rho_{s}}=\forall_{h}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\rho_{b} & =\frac{m_{m s h}}{V_{h}} \\
& =m_{m s h}=\frac{m_{m s h}}{m_{s h}} \times \rho_{s}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
& \rho_{d}=\frac{\rho_{6}}{1+m c}\left\{\begin{array}{l}
c^{r} \\
\text { from sample } \\
D O C=\frac{\rho_{d}}{M O D} \times 100 \geqslant 95 \%
\end{array} \$\right. \text {, }
\end{aligned}
$$

Worked Example

A field density test (using sand replacement method) was carried out on a compacted road base layer. The following results were recorded:

Mass of sand in the bottle (before test)
Mass of sand in the bottle (after test)
Mass of moist material from test hole

6655 g
2965 g
4315 g

Moisture content sample of this material:
(original mass)
(final mass)
312.3 g
286.8 g

Knowing the density of sand is $1252 \mathrm{~kg} / \mathrm{m}^{3}$, mass of sand in cone 1275 g , and MDD of $2.220 \mathrm{Mg} / \mathrm{m}^{3}$, determine the relative compaction (DOC) of the road base.

Given Data:

$$
\begin{aligned}
& M_{\mathrm{sb}}=6655 \mathrm{~g} \\
& \mathrm{M}_{\mathrm{sa}}=2965 \mathrm{~g} \\
& M_{\mathrm{msh}}=4315 \mathrm{~g} \\
& M_{\mathrm{sc}}=1275 \mathrm{~g} \\
& \rho_{\mathrm{s}}=1252 \mathrm{~kg} / \mathrm{m}^{3} \\
& M D D=2220 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Moisture content determination: moist mass $=312.3 \mathrm{~g}$ dry mass $=286.8 \mathrm{~g}$

Solution

$$
\begin{aligned}
\rho_{\mathrm{b}} & =[4315 /(6655-2965-1275)] \times 1252 \mathrm{~kg} / \mathrm{m}^{3} \\
& =2237 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{mc} & =(312.3-286.8) / 286.8 \\
& =0.088 \\
\rho_{\mathrm{d}} & =2237 /(1+0.088) \\
& =2056 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

DOC $=$ [2056 / 2220] $\times 100 \%$

$$
=92.6 \% \text { (less than } 95 \%, \text { not properly compacted })
$$

Thank you for your attention

e-mail your questions to:

cheros@utm.my

or
cheros1964@gmail.com

