

Quantitative Data Analysis: Descriptive Statistic

Adibah Abdul Latif | Aqeel Khan | Hee Jee Mei| Mahani Mokhtar | Narina Abu Samah | Zainudin Hassan

DESCRIPTIVE STATISTIC

- What is Statistic and Descriptive Statistic?

DESCRIPTIVE STATISTIC :-

- Describe the basic features of the data in a study
- Simple summaries
- What's going on in our data
- Permit the researcher to describe many pieces of data with a few indices

UTM ONLINELERRNING

DISTRIBUTION

- summary of the frequency of individual values or ranges of values for a variable.
- Distribution of respondent is by year in working experience, list the number or percent
- Describe gender by number or percent
- Describe income / CGPA ?

GRADE	FREQUEENCY
A	123
B	456
C	78
D	-
E	-
F	-

Table 1: Frequency of Students Grade

INCOME VALUES	PERCENTAGE
Below RM 1000	25
RM1001 to RM 3000	25
RM3001 to RM5000	30
Above RM5000	20

Table 2 : Percentage of Respondents' Income

UTM INLINELERRNING

- Sum of the scores divided by the number of scores.
- The mean is represented by the symbol \bar{X}

Formula for Mean

- $\overline{\mathrm{X}}=\underline{\underline{\Sigma}} \underline{x}$

N

- $\overline{\mathrm{X}}=$ Mean
- $\Sigma=$ The sum of
- X = Individual scores
- $\mathbf{N}=$ The number of scores
- Example:
- Let say there were four students taking a test. The scores were 90, 70, 67 and 50.
- The mean of the sample is,

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{N} \\
& =\frac{90+70+67+50}{4}
\end{aligned}
$$

$$
=69.25
$$

Properties of the Mean

- The mean is sensitive to the exact value of all the scores in the distribution
- The mean is very sensitive to extreme scores.)

Median

- the score found at the exact middle of the set of values.
- List all scores in numerical order, and then locate the score in the center of the sample.
- For example, if there are 1000 scores in the list, score \#500 would be the median.

Mode

- Most frequently occurring value in the set of scores.
- Order the scores, and then count each one. The most frequently occurring value is the mode.

$$
15,20,21,20,36,15,25,15
$$

- In our example, the value 15 occurs three times and is the mode.

DISPERSION

- spread of the values from the central tendency.
a) Range - the highest value minus the lowest value

$15,20,21,20,36,15,25,15$

Range is $36-15=21$.

STANDARD DEVIATION

- more accurate and detailed estimate of dispersion because an outlier can greatly exaggerate the range.
- The deviation score tells how far away the raw score is from the mean of its distribution.

Scores	Deviation	$(\text { Deviation })^{2}$
$\left(x_{i}\right)$	$\left(X_{i}-X\right)$	$\left(X_{i}-X\right)^{2}$
2	$(2-4.4)=-2.4$	5.76
5	$(5-4.4)=0.6$	0.36
4	$(4-4.4)=-0.4$	0.16
1	$(1-4.4)=-3.4$	11.56
6	$(6-4.4)=1.6$	2.56
3	$(3-4.4)=-1.4$	1.96
7	$(7-4.4)=2.6$	6.76
5	$(5-4.4)=0.6$	0.36
4	$(4-4.4)=-0.4$	0.16
7	$(7-4.4)=2.6$	6.76
	Total $=0$	\sum

where:

$$
\begin{aligned}
& \bar{X}=\text { each score } \\
& X=\text { the mean or average } \\
& n=\text { the number of values } \\
& \Sigma \text { means we sum across the values }
\end{aligned}
$$

Scores	Deviation	$(\text { Deviation })^{2}$
$\left(x_{i}\right)$	$\left(X_{i}-X\right)$	$\left(X_{i}-X\right)^{2}$
2	$(2-4.4)=-2.4$	5.76
5	$(5-4.4)=0.6$	0.36
4	$(4-4.4)=-0.4$	0.16
1	$(1-4.4)=-3.4$	11.56
6	$(6-4.4)=1.6$	2.56
3	$(3-4.4)=-1.4$	1.96
7	$(7-4.4)=2.6$	6.76
5	$(5-4.4)=0.6$	0.36
4	$(4-4.4)=-0.4$	0.16
7	$(7-4.4)=2.6$	6.76
	Total $=0$	\sum

The Standard Deviation (s)

(36.4/9)
$=2.01$

