
Javascript - DOM Form

Sarina Sulaiman

Faculty of Computing

JS: DOM Form

• Form Object
– The Form object represents an HTML

form.

– For each instance of a <form> tag in

an HTML document, a Form object is

created.
– Main form methods

• document.forms[0].submit()

• document.forms[0].reset()

• document.forms[0].action = ‘register.php';

JS: DOM Form

• document.forms[number].elements[number]

• Every <input>, <select> and <textarea> is form

element.

JS: DOM Form
• <form name="personal" action="something.pl" onsubmit="return

checkscript()"> <input type=text size=20 name=name>

• <input type=text size=20 name=address>

• <input type=text size=20 name=city>

• </form>

• Now you can access these elements by:

– document.personal.name

– document.personal.address

– document.personal.city

JS: DOM Form

• Getting data from Texts, textareas and hidden fields

– user_input = document.forms[0].text.value

– where text is the name of the text field, textarea
or hidden field.

– The value of this element gives the text, so we

transfer it to user_input.

• Setting value

– document.forms[0].text.value = 'The new value';

JS: DOM Form

• Select boxes

– Select boxes are simple too:

• user_input = document.forms[0].select.value;

– To change the selected option in a select box,

you have to change its selectedIndex,

• document.forms[0].select.selectedIndex = 2;

JS: DOM Form

• Checkboxes

– Checkboxes need a slightly different approach

– We already know their values, but want to know

whether the user has checked them.

– The checked property tells us.

– It can have two values: true or false.

JS: DOM Form

• if (document.forms[0].checkbox.checked)

 {

– user_input = document.forms[0].checkbox.name

 }

• To check a checkbox, set its property checked to

true:

– document.forms[0].checkbox.checked = true

JS: DOM Form

• Radio buttons

– Unfortunately it's not possible to see at once

which radio button in a group the user has

checked.

– You need to go through all radio's and see which

one's checked property is true.

JS: DOM Form

• Radio buttons

• for (i=0;i<document.forms[0].radios.length;i++)

– { if (document.forms[0].radios[i].checked)

 {

– user_input =

document.forms[0].radios[i].value;

 }

– }

JS: DOM Form

• Radio buttons

– where radios is the name of the group of radio

buttons.

– Note that document.forms[0].radios is an array

filled with all radio buttons.

– Loop through all of them and see if it is checked.

– If one is, transfer the value of that radio button to

user_input.

JS: DOM Form

• Using elements[]

– var form=document.getElementById("myForm");

– form.elements[0].value;

– form.elements[0].value = “new value”;

JS: Event Handling

• The building blocks of an interactive web

page is the Javascript event system.

• An event in Javascript is something that

happens with or on the web page. A few

example of events:
– A mouse click

– The web page loading

– Mousing over a hot spot on the web page, also

known as hovering

– Selecting an input box in an HTML form

– A keystroke

JS: Event Handling

• Different occurrences generate different types of

events.

• When the user moves the mouse over a hyperlink, it

causes a different type of event than when the user

clicks the mouse on the hyperlink.

• Even the same occurrence can generate different

types of events based on context:
– when the user clicks the mouse over a Submit button,

– for example, it generates a different event than when

the user clicks the mouse over the Reset button of a

form.

JS: Event Handlers & HTML

element
• Note: Events are normally used in combination with

functions, and the function will not be executed
before the event occurs!

• onload and onUnload
– The onload and onUnload events are triggered when the

user enters or leaves the page.
– The onload event is often used to check the visitor's browser

type and browser version, and load the proper version of
the web page based on the information.

– Both the onload and onUnload events are also often used to
deal with cookies that should be set when a user enters or
leaves a page.

– For example, you could have a popup asking for the user's
name upon his first arrival to your page.

– The name is then stored in a cookie. Next time the visitor
arrives at your page, you could have another popup saying
something like: "Welcome John Doe!".

JS: Event Handlers & HTML

element
• onFocus, onBlur and onChange

– The onFocus, onBlur and onChange events are

often used in combination with validation of form

fields.

– Below is an example of how to use the onChange

event. The checkEmail() function will be called

whenever the user changes the content of the

field:

• <input type="text" size="30" id="email"

onchange="checkEmail()">;

JS: Event Handlers & HTML

element
• onSubmit

– The onSubmit event is used to validate ALL form fields

before submitting it.

– The checkForm() function will be called when the user

clicks the submit button in the form.

– If the field values are not accepted, the submit should

be cancelled.

– The function checkForm() returns either true or false.

– If it returns true the form will be submitted, otherwise

the submit will be cancelled.

• <form method="post" action="xxx.htm"

onsubmit="return checkForm()">

JS: Event Handlers & HTML

element – Activity 14.2

• onMouseOver and onMouseOut

– onMouseOver and onMouseOut are often used to

create "animated" buttons.

– onMouseOver animate when a button is click

such as in a:hover

– onMouseOut animate when a button is normal

state

http://gmm.fsksm.utm.my/~rosely/scv1223/js/

JS: Form verification

• Activity 14.1

http://gmm.fsksm.utm.my/~rosely/scv1223/js/

THANK YOU

