
Binary Search Tree

SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

At the end of the class students are expected to:

Identify characteristics of binary
search tree

Identify basic operations of a tree
such as tree traversals, insert
node, delete node, searching

Binary Search Tree

What is binary search tree?

 The tree has the properties, whereby every node,

called n in the tree has value:

Value of n is greater than all values in n’s left
subtree.

Value of n is less than all values in n’s right
subtree.

Both left subtree and right subtree are also
binary search trees

Binary Search Trees

n

All key in

the left sub-

tree is less

than n

All key in the right

sub-tree are

greater than n

18

20

40

15

10

5

8>n<n

43

Binary Search Tree

Not a Binary Search Tree Binary Search Tree

Kyra

Disadvantages of Binary Search

Tree

The shape of the tree depends on the order of
insertions, and it can be degenerated.

When inserting or searching for an element, the key of
each visited node has to be compared with the key of
the element to be inserted/found.

Keys in the tree may be long and the run time may
increase.

Binary Search Tree

Two binary search trees representing the same set:

– Average depth of a node is O(log n);

– Maximum depth of a node is O(n)

Pointer-based ADT Binary Tree

A pointer-based implementation

of a binary tree

• Elements in a binary tree is

represented by using
nodes.

• Nodes store the

information in a tree.

• Each node in the tree must

contain at least 3 fields
containing:

 item

 Pointer to left subtree

 Pointer to right subtree

• Need 2 declarations in a

tree implementation:

1. Node declaration
2. Tree declaration

Node representation

F

leftPtr info rightPtr

Node Implementation

Where:

info, the node store char value.

left, pointer to left subtree

right, pointer to right subtree

typedef char ItemType;

struct TreeNode

{

itemType info;

TreeNode *left;

TreeNode *right;

}

Node representation

F

leftPtr info rightPtr

Tree Implementation

The tree can be accessed using root, which is
a pointer to root of the tree.

class TreeType {

public:

TreeType(){ head = NULL; };

bool IsEmpty() { return head == NULL; }

void RetrieveItem(ItemType&,bool& found);

void InsertItem(ItemType);

void DeleteItem(ItemType);

void PrintTree() const;

private:

TreeNode * root;

};

Insert Node Into a Binary Search

Tree

 The insert operation will insert a node to a tree and

the new node will become leaf node.

 Before the node can be inserted into a BST, the

position of the new node must be determined. This

is to ensure that after the insertion, the BST

characteristics is still maintained.

Insert 5, 10, 8, 3 , 4 and 15 in a BST

Empty tree Insert 5 Insert 10

Insert 8 Insert 3 Insert 4

Insert 5, 10, 8, 3 , 4, 15 to a tree

Finally, Insert the last node; 15.

Time complexity = O(height of the tree)

Delete a Node from a Tree

 When a node is deleted, the children of the deleted

node must be taken care of to ensure that the

property of the search tree is maintained.

 There are 3 possible cases to delete a node in a

tree:

1. Delete a leaf

2. Delete a node with one child

3. Delete a node that has two children

Delete a Leaf Node

The node to be deleted is a leaf

 Set the pointer in N’s parent to NULL and
delete it immediately

 Example : Delete leaf Node: Z

Before delete
After delete Z

Delete a Node With One Child

Delete node R.

Adjust a pointer from the parent to bypass that

node

Before delete R After delete R

To delete a node N that has two children.

 Locate another node M that is easier to delete

• M is the leftmost node in N’s right
subtree

• M will have no more than one child

• M’s search key is called the inorder
successor of N’s search key

 Copy the item that is in M to N

 Remove the node M from the tree

Delete a Node With Two Children

Delete a Node with 2 Children
Delete Q that has 2 children

Summary

Binary search trees come in many shapes.
The shape of the tree determines the
efficiency of its operations. It is important
to have balanced tree in order to ensure
the efficiency of tree operations.

The height of a binary search tree with n
nodes can range from a minimum of
Olog2(n + 1) to a maximum of n.

Thank
You

http://comp.utm.my/

