
Sequential Search

SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

At the end of the class, students are expected to

understand the implementation of
sequential search on unsorted data and
sorted data

analyze the efficiency of the searching
techniques

Basic Sequential Search
 to search item from unsorted list or array.

 For small size of list

– because the efficiency of sequential

search is low

 In a sequential search:

Every element in the array will be
examine sequentially, starting from

the first element.

The process will be repeated until the
last element of the array or until the

searched data is found.

Basic Sequential (BS) Search

 Used for searching that involves records stored in the

main memory (RAM)

 The simplest search algorithm, but is also the slowest

 Searching strategy:

4

Examines each element in the array one by
one and compares its value with the key

Successful if the search key matches

else, if no matches is found, the search process
is continued to the last element of the array

int SequenceSearch(int search_key,

const int array [],

int array_size)

{ int p;

int index =-1; //-1 means record is not found

for (p = 0; p < array_size; p++){

if (search_key == array[p]){

indeks = p;//assign current array index

break;

}//end if

} //end for

return index;

} //end function
5

Basic Sequential Search Function

Every element in
the array will be

examined until the
search key is found

or until the
search

process has
reached the
last element
of the array

-1

search_key 22

11 33 22 55 44

[0] [1] [2] [3] [4]

index

array

BS Search implementation –

Search key = 22
int SequenceSearch(int search_key,

const int array [],

int array_size)

{ int p;

int index =-1;

//-1 means record is not found

for (p = 0; p < array_size; p++){

if (search_key == array[p]){

indeks = p;

//assign current array index

break;

}//end if

} //end for

return index;

} //end function

7

p=0

p=1

-1

22

11 33 22 55 44

[0] [1] [2] [3] [4]

-1

22

11 33 22 55 44

[0] [1] [2] [3] [4]

index

index

array

search_key

search_key

array

int SequenceSearch(int search_key,

const int array [],

int array_size)

{ int p;

int index =-1;

//-1 means record is not found

for (p = 0; p < array_size; p++){

if (search_key == array[p]){

indeks = p;

//assign current array index

break;

}//end if

} //end for

return index;

} //end function

BS Search implementation –

Search key = 22

p=2

2

22

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

index

array

int SequenceSearch(int search_key,

const int array [],

int array_size)

{ int p;

int index =-1;

//-1 means record is not found

for (p = 0; p < array_size; p++){

if (search_key == array[p]){

indeks = p;

//assign current array index

break;

}//end if

} //end for

return index;

} //end function

BS Search implementation –

Search key = 22

Search for key 22 is successful
& return 2

9

false

25

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

found

array

int SequenceSearch(int search_key,

const int array [],

int array_size)

{ int p;

int index =-1;

//-1 means record is not found

for (p = 0; p < array_size; p++){

if (search_key == array[p]){

indeks = p;

//assign current array index

break;

}//end if

} //end for

return index;

} //end function

BS Search implementation –

Search key = 25

p=0,1,2,3,4 => search key is not matches
Search is unsuccessful

-1index

false

25

11 33 22 55 44

[0] [1] [2] [3] [4]

search_key

found

array

-1index

 Searching time for sequential search is O(n).

– the searched key is located at the end the

list or

– the key is not found

 If the list can be found at index 0, then

searching time is, O(1).

10

Sequential Search Analysis

 Problem:

– Search key is compared with all elements in the list,

O(n) time consuming for large datasets.

 Solution:

– Improved the efficiency –s earching on a sorted list.

– For searching on ascending list, search key until :

1. found.

2. Or key value is smaller than the item compared

=> This will minimize the searching process.

Improvement of Basic Sequential

Search Tech.

Sequential Searching on Sorted Data
int SortedSeqSearch (int search_key, const int

array[],

int array_size)

{ int p;

int index = -1; //-1 means record not found

for (p = 0; p < array_size; p++)

{ if (search_key < array [p])

break;

// loop repetition terminated

// when the value of search key is

// smaller than the current array element

else if (search_key == array[p])

{

index = p; // assign current array index

break;

} // end else-if

}//end for

return index; // return the value of index

} //end function

Steps to Execute Sequential Search

Function on a Sorted List

Assume:

– search_key = 25

– array_size = 5

Step 1 -1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

Step 2

Step 3

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

index

array

search_key

Steps to Execute Sequential Search

Function on a Sorted List

Step 4

-1

25

11 22 33 44 55

[0] [1] [2] [3] [4]

index

array

search_key

Steps to Execute Sequential Search

Function on a Sorted List

 If the elements in the list is not in a sorted

(asc/desc) order, loop will be repeated

based on the number of elements in the

list

 Sequential search on sorted data is more

efficient than sequential search on

unsorted data.

 If the list is sorted in descending order,

change operator “<“ to operator “>” in
the loop for

Summary

Thank
You

http://comp.utm.my/

