
Quick Sort
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Quick Sort Operation

 Quick sort is similar with merge sort in using
divide and conquer technique.

 Differences of Quick sort and Merge sort :

Quick Sort Merge Sort

Partition the list based on the pivot
value

Partition the list by dividing the list
into two

No merge operation is needed since
when there is only one item left in
the list to be sorted, all other items
are already in sorted position.

Merge operation is needed to sort
and merge the item in the left and
right segment.

Quicksort

 A divide-and-conquer algorithm

 Strategy
1. Choose a pivot (first element in the array)

2. Partition the array about the pivot
• items < pivot

• items >= pivot

• Pivot is now in correct sorted position

3. Sort the left section

4. Sort the right section

pivot
Partition the list

pivotitems < pivot items > pivot

Left segment with
pivot

Right segment with
pivot

Partition
process is
repeated
until there
is only one
item left in
the list.

Quick Sort Process

quickSort() function

void quickSort (dataType arrayT[],

int first , int last)

{

int cut;

if (first<last){

cut = partition(T, first,last);

quickSort(T, first,cut);

quickSort (T, cut+1, last);

}

}

cut the list into 2
sub lists based on
cut value

Identify pivot or cutting
point & rearrange the
list based on pivot
value

quickSort [5 15 7 2 4 1 8 10 3]

Left segment- all
items are less than 5

Right segment- all
items are greater
than 5

partition() function
int partition(int T[], int first,int last)

{

int pivot, temp;

int loop, cutPoint, bottom, top;

pivot=T[first];

bottom=first; top= last;

loop=1; //always TRUE

while (loop) {

while (T[top]>pivot){

// find smaller value than

// pivot from top array

top--;

}

while(T[bottom]<pivot){

//find larger value than

//pivot from bottom

bottom++;

}

From top
Find value < pivot

& skip value > pivot

From bottom
Find value > pivot

& skip value < pivot

Identify pivot

if (bottom<top) {

// change pivot place

temp=T[bottom];

T[bottom]=T[top];

T[top]=temp;

}

else {

loop=0; //loop false

cutPoint = top;

}//end if

}// end while

return cutPoint;

}//end function

partition() function

Swap values disorder at
top & bottom position

Return cut value

Stop loop

Partition process for array:

[5 15 7 2 4 1 8 10 3]

bahiah@utm.my

quickSort[5 15 7 2 4 1 8 10 3]

Quick Sort Analysis
 The efficiency of quick sort depends on the pivot

value.

 The worse case for quick sort occur when the smallest
item or the largest item always be chosen as pivot
value
– causing the left partition and the right partition not balance.

Example of worse case
quick sort:
sorted array [1 2 5 4]
causing imbalance
partition.

Quick Sort Analysis
 The best case for

quick sort happen

when the left

segment and the

right segment is

balanced

 Must choose the

right pivot that can

put other items in

balance situation.

Example of best case quick
sort: array[1 2 5 4].

Quick Sort Analysis
 The number of steps to get the balance segment

The number of
comparisons

Quick Sort Analysis

 Average case: O(n * log2n)

 Worst case: O(n2)

– When the array is already sorted and the

smallest/largest item is chosen as the pivot

 Quicksort is usually extremely fast in practice

 Even if the worst case occurs, quicksort’s

performance is acceptable for moderately large

arrays

Summary

 Un-optimized simple sorting algorithms (selection

sort, bubble sort, and insertion sort) are all O(n2)
algorithms

 Quicksort and Mergesort are two very fast recursive

sorting algorithms

Thank
You

http://comp.utm.my/

