
Bubble Sort
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Bubble Sort

How Bubble Sort perform sorting?

 Bubble sort complexity is is O(n2) and only suitable

to sort array with small size of data.

Go through multiple passes over the array.

In every pass:

• Compare adjacent elements in the list.

• Exchange the elements if they are out of order.

• Each pass moves the largest (or smallest) elements
to the end of the array

Repeating this process in several passes eventually sorts
the array into ascending (or descending) order.

Bubble Sort Process

Sort [7 8 3 1 6] into Ascending Order

pass = 1 List Size = 5

no swap swap(8,3) swap(8,1) swap (8,6)

pass = 2 listSize = 5

swap(7,3) swap(7,1) swap (7,6)

Sort [7 8 3 1 6] into Ascending Order

pass= 3

Sort [7 8 3 1 6] into Ascending Order

swap(3,1) no swap

pass = 4

Sort [7 8 3 1 6] into Ascending Order

no swap

Bubble Sort Implementation
// Sorts items in an array into ascending

order.

void BubbleSort(dataType data[], int listSize)

{ int pass, tempValue;

for (pass =1;pass < listSize; pass++)

{

// moves the largest element to the

// end of the array

for (int x = 0; x < listSize - pass; x++)

//compare adjacent elements

if (data[x]>data[x+1])

{ // swap elements

tempValue = data[x];

data[x] = data[x+1];

data[x+1] = tempValue;

}

}

} // end Bubble Sort

External for loop is used to
control the number of passes
needed.

Internal for loop is used to
compare adjacent elements
and swap elements if they are
not in order. After the internal
loop has finished execution,
the largest element in the array
will be moved at the top.
if statement is used to
compare the adjacent
elements.

Bubble Sort Analysis
 The number of comparison between elements

and the number of exchange between elements
determine the efficiency of Bubble Sort algorithm.

 Generally, the number of comparisons between
elements in Bubble Sort can be stated as follows:

(n-1)+(n-2)+…….+2+1= n(n-1)/2 = O(n2)

Bubble Sort Analysis [7 8 3 1 6]

Pass 2 : Comparisons (listSize-pass:(5-2=3))

Pass 4 : Comparisons (5-4=1)

(n-1)+(n-2)+……….….+2+1= n(n-1)/2 = O(n2)

The number of comparisons:

(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

Pass 1 : Comparison (listSize-pass=4)

Pass 3 : Comparison (5-3= 2)

Worse Case Analysis [8 7 6 3 1]

The number of comparisons to sort data in this list:
(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

Pass 1 : Comparison (5-1=4) Pass 2 : Comparisons (5-2=3)

Pass 3 : Comparison (5-3= 2) Pass 4 : Comparisons (5-4=1)

Best Case Analysis [1 3 6 7 8]

Pass 1 : Comparison (5-1=4) Pass 2 : Comparisons (5-2=3)

Pass 3 : Comparison (5-3= 2) Pass 4 : Comparisons (5-4=1)

The number of comparisons to sort data in this list:
(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

Bubble Sort Analysis

In any cases, (worse case, best case or

average case) to sort the list in ascending

order the number of comparisons between

elements is the same.

–Worse Case [8 7 6 3 1]

–Average Case [7 8 3 1 6]

–Best Case [1 3 6 7 8]

Regardless of the initial arrangement of data

in the lists, all lists with 5 elements need 10

comparisons to sort all the data.

Bubble Sort Analysis
 In the example given, it can be seen that the

number of comparison for worse case and best
case is the same - with 10 comparisons.

 The difference can be seen in the number of
swapping elements. Worse case has maximum
number of swapping: 10, while best case has no
swapping since all data is already in the right
position.

 For best case, starting with pass one, there is no
exchange of data occur.

 From the example, it can be concluded that in any
pass, if there is no exchange of data occur, the list
is already sorted. The next pass shouldn't be
continued and the sorting process should stop.

Improved Bubble Sort
To improve the efficiency of Bubble

Sort, a condition that check whether

the list is sorted should be add at the

external loop

A Boolean variable, sorted is

added in the algorithm to signal
whether there is any exchange
of elements occur in certain
pass.

In external loop, sorted is set
to true. If there is exchange
of data inside the inner loop,
sorted is set to false.

Another pass will continue, if
sorted is false and will stop if
sorted is true.

// Improved Bubble Sort

// Sorts items in an array into ascending order.

void bubbleSort(DataType data[], int n)

{ int temp;

bool sorted = false; // false when swaps occur

for (int pass = 1; (pass < n) && !sorted; ++pass)

{ sorted = true; // assume sorted

for (int x = 0; x < n-pass; ++x)

{ if (data[x] > data[x+1])

{ // exchange items

temp = data[x];

data[x] = data[x+1];

data[x+1] = temp;

sorted = false; // signal exchange

} // end if

} // end for

} // end for

} // end bubbleSort

Improved Bubble Sort : Best Case[1 3 6 7 8]

In pass 1, there is no exchange of data occur and variable sorted is
always True.

Therefore, condition statement in external loop will become false and the
loop will stop execution. In this example, pass 2 will not be continued.

sorted = T T T T

pass = 1

Analysis - For best case, the number of comparison between
elements is 4, (n-1) which is O(n).

Bubble Sort – Algorithm Complexity
Complexity is measured based on time
consuming operations to compare and swap
elements.

• Worst Case (n-1)+(n-2)+(n-3) …+1 ,
or O(n2)

• Best Case – (n-1) or O(n)

Number of
comparisons

• Best Case 0, or O(1)

• Worst Case (n-1)+(n-2)+(n-3) …+1 ,
or O(n2)

Number of
Swaps

Summary

Bubble Sort takes several passes to sort elements
in an array.

In every pass, comparisons between elements
and exchange the data if the elements are not
in the right order need to done.

However the complexity of Bubble sort is the same
for best case and worse case and the algorithm
need to be improved.

Thank
You

http://comp.utm.my/

