
Insertion Sort
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Insertion Sort
 What is the strategy of Insertion Sort?

 Appropriate for small arrays due to its simplicity

Partition the array into two regions:
sorted and unsorted

Take each item from the
unsorted region and insert it
into its correct order in the

sorted region

Find the next item in unsorted
element and insert it in correct

place, relative to the ones
already sorted.

Take multiple passes over the array

Insertion Sort Implementation [7 8 3 1 6]
void insertionSort(dataType data[])
{ dataType item;

int pass, insertIndex;
for(pass=1;

pass<n;pass++)
{

item = data[pass];
insertIndex = pass;

while((insertIndex >0) &&
(data[insertIndex -1]>item))

{
//insert the right item
data[insertIndex]= data[insertIndex -1];
insertIndex --;

}
data[insertIndex] = item;

//insert item at the right place
}

}

item=8 > data[0]=7. while loop

condition is false, therefore

data[1] will be assigned with

item = 8.

No of comparison = 1

insertIndex = 1 Item = 8

Pass 1

Initial list

Insertion Sort Implementation [7 8 3 1 6]

Item to be insert is 3. Insertion point is from indeks 0-

2, which is between 7 and 8.

Number of comparison = 2

Pass 2

Initial list

insertIndex =

Item =

Pass 2

Insertion Sort Implementation [7 8 3 1 6]

Pass 3

insertIndex

item

Item to be insert is 1. Insertion point is from indeks 0-3,
which is between 3, 7 and 8.

Number of comparison = 3

Initial
list

Insertion Sort Implementation [7 8 3 1 6]

Pass 4

insertIndex

item

Item to be insert is 6. Insertion point is from indeks 0-4, which is
between 1,3, 7 and 8. at index, item (6) > data[1]=3, while loop
condition is false and therefore data[2] is assigned with value for item
= 6.

Number of comparison = 3

Initial list

Insertion Sort for Best Case [5 6 7 8 9]

item=6 > data[0]=1. while condition is

false and data[1] is assigned with item=6.

Number of Comparison= 1

Best case for Insertion Sort can
be achieved when data is
almost sorted or totally sorted.
Each pass will have 1
comparison only.

Pass 1

insertIndex

item

Initial list

Insertion Sort for Best Case [5 6 7 8 9]

Pass 2

insertIndex

item

Item=7 > data[1]=1.

while condition become

false and data[2] is

assigned with item=7.

Number of Comparison

is 1

Initial list

Insertion Sort for Best Case [5 6 7 8 9]

Pass 3

insertIndex

item

Item=8 > data[2]=7.

while condition

become false and

data[3] is assigned

with item=8.

Number of

Comparison is 1

Initial list

Insertion Sort for Best Case [5 6 7 8 9]

Pass 4

insertIndex

item

Item=9 > data[3]=8. while

condition become false

and data[4] is assigned

with item=9.

Number of Comparison is 1

Initial list

Insertion Sort Analysis – Best Case
There are 4 passes to sort array with elements [5 6 7
8 9].

In each pass there is only 1 comparison.

Example,

Pass 1, 1 comparison

Pass 2, 1 comparison

Pass 3, 1 comparison

Pass 4, 1 comparison

In this example, the total comparisons for an array
with size 5 is 4. Therefore, for best case, the number
of comparison is n-1 which gives linear time
complexity - linear O(n).

Insertion Sort Analysis – Worse Case
Worse case for insertion sort is when we have totally unsorted
data. In each pass, the number of iteration for while loop is
maximum.

Pass 4, 4 comparison - (n-1)

Pass 3, 3 comparison -(n-2)

Pass 2, 2 comparison -(n-3)

Pass 1, 1 comparison - (n-4)

The number of comparisons between elements in Insertion Sort
can be stated as follows:

Insertion Sort Analysis

The number of comparisons is as follows:

InsertionSort – Algorithm Complexity

 Number of comparisons

– worst case : 1+2+…+(n-1), O(n2)

– best case : (n-1)* 1 , O(n)

 Number of swaps

– worst case : 1+2+...+(n-1), O(n2)

– best case : 0 , O(1)

Insertion Comparisons: Swaps

Best Case O(n) 0

Average Case O(n2) O(n2)

Worst Case O(n2) O(n2)

Summary and Conclusion
Insertion Bubble Selection

Comparisons:

Best Case O(n) O(n2) O(n2)

Average Case O(n2) O(n2) O(n2)

Worst Case O(n2) O(n2) O(n2)

Swaps

Best Case 0 0 O(n)

Average Case O(n2) O(n2) O(n)

Worst Case O(n2) O(n2) O(n)

Both Bubble sort and Selection sort performance do not depend on the

initial arrangement of data, however, insertion sort performance is better

for the best case.

Thank
You

http://comp.utm.my/

