
Selection Sort
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Selection Sort

Selection Sort Strategy

Choose the largest/smallest item in the array and
place the item in its correct place

Choose the next larges/next smallest item in the
array and place the item in its correct place.

Repeat the process until all items are sorted.

Selection Sort

 Selection Sort does not depend on the initial
arrangement of the data

 Only appropriate for small n - O(n2)
algorithm

Selection Sort Implementation

4

void selectionSort(DataType Data[], int n)

{

for (int last = n-1; last >= 1; --last)

{// select largest item in theArray

// swap largest item Data[largestIndex] with

// Data[last]

swap(Data[largestIndex],Data[last]);

} // end for

} // end selectionSort

largestIndex : index of the

largest item found

last : index of the last item

in the subarray of items

yet to be sorted.

swap: change largest value

with item at last index of

the subarray.

int largestIndex = 0;

// largest item is assumed start at index 0

for (int p=1;p <= last; ++p)

{ if (Data[p] > Data[largestIndex])

largestIndex = p;

} // end for

swap()function

5

void swap(DataType& x, DataType& y)
{ DataType temp = x;

x = y;
y = temp;

} // end swap

Swap function interchange value x and y. In this

example both x and y need to be pass by reference

Selection Sort Implementation: [7 8 3 1 6]

Starting from index 1 to index 4, the largest value in the array

will be searched. In pass 1, the largest value is 8 and was

found at index 1. Therefore value at index 1 (8) will be swap

with value at index last(4).

There are 4 comparisons in this pass.

Pass 1, last = 4

largestIndex = 0, 1, 1, 1

p = 1, 2, 3, 4

Selection Sort Implementation: [7 8 3 1 6]

Pass 2

last = 3

largestIndex = 0, 0, 0

p = 1, 2, 3

Pass 3

last = 2

largestIndex = 0, 1

p = 1, 2

Pass 4

last = 1

largestIndex = 0, 1

p = 1

Selection Sort Implementation: [7 8 3 1 6]

Step by step changes in the list that show the swapping
process during selection sort implementation on

array [7 8 3 1 6]

last = 4 3 2 1

largestIndex = 1 0 1 1

Selection Sort Implementation for

Best Case [2 4 6 8 10]

Step by step changes in the list that show the
swapping process during selection sort
implementation on array [2 4 6 8 10]

last = 4 3 2 1

largestIndex = 4 3 2 1

Selection Sort Analysis
• For an array with size n, the external loop will

iterate from n-1 to 1.
for (int last = n-1; last>=1; --last)

• For each iteration, to find the largest number in
subarray, the number of comparison inside the
internal loop must is equal to the value of last.

for (int p=1;p <=last; ++p)

• Therefore the total comparison for Selection Sort in
each iteration is (n-1) + (n-2) + ….. 2 + 1.

• Generally, the number of comparisons between
elements in Selection Sort can be stated as
follows:

Selection Sort Analysis
Similar To Bubble Sort, in any cases of Selection Sort
(worse case, best case or average case) the
number of comparisons between elements is the
same.

Number of Comparisons: 4 + 3 + 2 + 1 = 10

For array n= 5 => (n-1) + (n-2) + ….+ 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

largestIndex = 1 0 1 1

Selection Sort Analysis

Number of Comparisons for best case : 4 + 3 + 2 + 1 = 10

For array n= 5 => (n-1) + (n-2)+ …. + 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

largestIndex = 4 3 2 1

Summary

 The efficiency of Selection Sort does not depend on

the initial arrangement of the data.

 Time Complexity for Selection Sort is the same for all

cases - worse case, best case or average case

O(n2).

Selection Comparison Swap

Best Case O(n2) O(n)

Average Case O(n2) O(n)

Worst Case O(n2) O(n)

Thank
You

http://comp.utm.my/

