
Algorithm Efficiency Analysis
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Objectives

Students are expected to be able to do the

following:

Understand algorithm efficiency analysis.

Able to measure algorithm efficiency using
big O notation.

What is algorithm analysis?

Study the efficiency of algorithms when the

input size grow, based on the number of

steps, the amount of computer time and the

space usage.

Analysis of algorithms

 Algorithm analysis concern with the size and

growth of data run on a particular algorithm.

 However, algorithm analysis should be

independent of :

– Specific implementations (programming language

such as C, C++ or Java)

– Specific Computer hardware (computer chips, OS,

or speed)

– Particular set of data (string, int, float)

Analysis of algorithms

Three possible states in algorithm analysis:
Worst case

• Longest running time for any input of size n

• A determination of the maximum amount of time that an algorithm
requires to solve problems of size n

Best Case

• Shortest running time for any input of size n

• A determination of the minimum amount of time that an algorithm
requires to solve problems of size n

Average Case

• Average running time for all inputs of size n

• A determination of the average amount of time that an algorithm
requires to solve problems of size n

Big O Notation

 Complexity time can be represented by

Big „O‟ notation.

 Notation that used to show the complexity time of
algorithms.

 Big „O‟ notation is denoted as O(f(n)).

whereby

O – “the order of”

f(n)- algorithm‟s growth-rate function

Example, O(1), O(logxn), O(n), (On logxn), O(n2)

Big O Notation Example

Notation Execution time

O(1) Constant function, independent of input size, n

Example: Finding the first element of a list.

O(logxn) Problem complexity increases slowly as the problem size

increases.

Example: Solve a problem by splitting into constant

fractions of the problem (e.g., throw away ½ at each step)

O(n) Problem complexity increases linearly with the size of the

input, n

Example: counting the elements in a list.

Big O Notation Example cont..

O(n logxn) Log-linear increase - Problem complexity increases a little

faster than n

Characteristic: Divide problem into subproblems that are

solved the same way

Example: mergesort

O(n2) Quadratic increase.

Problem complexity increases fairly fast, but still manageable

Characteristic: Two nested loops of size n

O(n3) Cubic increase.

Practical for small input size, n.

O(2n) Exponential increase - Increase too rapidly to be practical

Problem complexity increases very fast

Generally unmanageable for any meaningful n

Example: Find all subsets of a set of n elements

Big O Notation Algorithm

Notation Codes

O(1)

Constant

int counter = 1;

cout << "cout execution times" << counter;

O(logxn)

Logarithmic

int counter = 1; int i = 0;

for (i = x; i <= n; i = i * x)

{ // x must be > than 1

cout << "cout execution times" << counter ;

counter++;

}

// Ex: if x = 2 and n = 16

// i = 2, 4, 8, 16

Big O Notation

O(n)

Linear

int counter = 1; int i = 0;

for (i = 1; i <= n; i++) {

cout << "cout execution times" << counter ;

counter++;

}

O(n

logxn)

Linear

Logarith

mic

int counter = 1; int i = 0; int j = 1;

for (i = x; i <= n; i = i * x)

{ // x must be > than 1

while (j <= n) {

cout << "cout execution times" << counter;

counter++; j++;

}

}

Big O Notation

O(n2)

Quadratic

int counter = 1;

int i = 0;

int j = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

cout << "cout execution times" << counter;

counter++;

}

}

 Example of algorithm for common function:

Big O Notation Algorithm

O(n3)

Cubic

int counter = 1;

int i = 0;

int j = 0;

int k = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

for (j = 1; j <= n; j++) {

cout << "cout execution times " << counter;

counter++;

}

}

}

Big O Notation Algorithm

O(2n)

Exponential

int counter = 1;

int i = 1;

int j = 1;

while (i <= n) {

j = j * 2;

i++;

}

for (i = 1; i <= j; i++) {

cout << "cout execution times" << counter;

counter++;

}

Order of increasing complexity

O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

Notasi n = 8 n = 16 n = 32

O(1) 1 1 1

O(log2n) 3 4 5

O(n) 8 16 32

O(n log2n) 24 64 160

O(n2) 64 256 1024

O(n3) 512 4096 32768

O(2n) 256 65536 4294967296

Determine the number of steps

Conclusion and Summary

14/1/2015 16

Algorithm analysis to study the efficiency of algorithms
when the input size grow, based on the number of steps,
the amount of computer time and space

Can be done using Big O notation by using growth of
function.

Order of growth for some common function:

• O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

Three possible states in algorithm analysis best case,
average case and worst case.

Thank
You

http://comp.utm.my/

