
	

	

MODULE 8

STACK
DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
UNIVERSITI TEKNOLOGI MALAYSIA

	

	

	

OBJECTIVES FOR STUDENTS

1. Understand the stack concept and its structure.

2. Understand the operations that can be done on a stack.

3. Understand and know how to implement stack using array and linked list.

KEY CONCEPT

1.0 INTRODUCTION TO STACK

1.1. Stack definition –

• A linear list whereby all additions and deletions are restricted at one
end, called top.

• A stack has LAST IN FIRST OUT (LIFO) property.
• Items come last will be put at the top and deleted first.
• In Computer Science, stack provides techniques to facilitate the

development of computer programs especially in compiler operations.

1.2. Example of stack :

• Stack of books or stack of plates.
• Long and narrow driveway. BMW comes in first, Lexus follows, Benz enters

in last. When the cars come out, Benz comes out first, then Lexus follows,
and BMW comes out last.

• Reverse a string. Example: TOP, Reverse: POT
• Brackets balancing in compiler
• Page-visited history in a Web browser
• Undo operation in many editor tools
• Check nesting structure

	

	

1.3. More example of stack :

• In an Excel file, input your data in row lets say 100, 200, 300, 400
• If we find something wrong, use undo and return to the previous

state

1.4. LAST IN FIRST OUT (LIFO)
• Adding an entry on the top is called push
• Deleting an entry from the top is called pop
• A stack is open at one end (the top) only. You can push entry onto the

top, or pop the top entry out of the stack.

	

	

2.0 STACK IMPLEMENTATION

2.1. Stack Implementation :

• Stack is an abstract data structure
• Items in a stack can be integer, double, string, and also can be any data

type, such as Employee, Student etc
• We can implement stack using array or linked list.

2.2. Implementation of Stack :

• Array
o Size of stack is fixed during declaration
o Item can be pushed if there is some space available, need isFull()

operations.
o Need a variable called, top to keep track the top of a stack.
o Stack is empty when the value of top is –1.

• Linked List

o Size of stack implementation linked list is flexible. Item can be
pushed and popped dynamically.

o Need a pointer, called top to point to the top of stack

3.0 ARRAY IMPLEMENTATION OF STACK

3.1 Stack Declaration

• Stack can be visualized as array, BUT the operations can be done at top
of the stack only

• We need two data attributes for stack:

o Data : array that store item in the stack. In this example data will
store char value

o top : as index for top of stack, integer type
• Size of the array that store component of stack is 100. In this case, stack

can store up to 100 char value.

top	 =2	

	

	

• Stack class declaration, shown in Program 8.1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Program 8.1
//Stack declaration:
const int size = 100;
class stack
{
 private: //data declaration
 int top;
 char data[siza];
 public: //public declaration
 void createStack();
 void push(char); //insert operation
 void pop(); //delete operation
 char stackTop(); //get top value
 bool isFull(); //check if stack full
 bool isEmpty(); //check if stack empty
} ;

3.2 Stack Implementation

• Thera are 3 things to be considered for stack with array.

• Stack is Empty : when top is -1.

• Push operations - To insert item into stack, 2 statements must be used

o top = top + 1;

o stack[top] = newitem;

• pop operations - To delete item from stack, 2 statements should be used

o item = stack[top]; or stackTop();

o top = top – 1;

• item = stack[top]; statement is needed if we want to check the value to
be popped from the stack

3.3 Stack Operations

• The basic stack operations as declared in Program 8.1 are:

o createStack()
o push(item)
o pop()
o isEmpty()
o isFull()
o stackTop()

3.4 createStack() operation

• Stack will be created by initializing top to -1.

	

	

• createStack() implementation is shown in Program 8.2

• top is –1 - means that there is no item being pushed into stack yet.

1
2
3
4
5

// Program 8.2
void stack::createStack()
{
 top=-1;
}

3.5 isFull() operation

• This operation is needed only for implementation of stack using array.
• In an array, size of the array is fixed and to create new item in the array

will depend on the space available.
• This operation is needed before any push operation can be implemented

on a stack.
• isFull() implementation is as in Program 8.3

1
2
3
4
5

// Program 8.3
bool stack::isFull()
{
 return (top == size-1);
}

• In Program 8.3, if the size of the array is 100,

o bool isFull() will return true, if top is 99 (100 – 1).
o bool isFull() will return false, if there is some space available, top is

less than 100.

3.6 isEmpty() operation

• This operation will check whether the array for stack is empty.
• This operation is needed before pop operation can be done. If the stack

is empty, then pop operation cannot be implemented
• bool isEmpty() will return true if top is –1 and return false if top is not equal

to -1, showing that the stack has element in it.
• isEmpty() implementation is shown in Program 8.4

1
2
3
4
5

// Program 8.4
bool stack::isEmpty()
{
 return (top == -1);
}

3.7 push() operation

• push() operation will insert an item at the top of stack. This operation can

	

	

be done only if there is space available in the array
• Before any item can be inserted into a stack, isFull() operation must be

called first.
• Insertion operation involve the following steps:

o top will be increased by 1.
§ top = top + 1;

o New item will be inserted at the top
§ data[top] = newItem;

 before push()operation after push()item 3 to stack,
 top increase by 1

• push() implementation is as shown in Program 8.5
o Top will be increased first before item is inserted and it will avoid

inserting item at the current top value.

1
2
3
4
5
6
7
8
9

10
11
12

// Program 8.5
void stack::push(char newitem)
{
 if(isFull()) //check whether stack is full
 cout << ”Sorry, Cannot push item.
 Stack is now full!”<<endl;
 else
 {
 top=top+1; //Top point to next index
 data[top]=newitem; //assign new item
 }//end else
}//end push()

3.8 pop() operation

• This operation will delete an item at top of stack.
• Function isEmpty() will be called first in order to ensure that there is item in

a stack to be deleted. If isEmpty() return False, pop() can be
implemented on stack

• pop() operation will decrease the value of top by 1:
o top = top - 1;

	

	

 before pop() after pop(),

 item 3 is taken out from stack
 and top decrease

• pop() implementation is shown in Program 8.6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// Program 8.6
void stack::pop()
{
 char item;
 if(isEmpty())
 cout << ”Sorry, Cannot pop item.
 Stack is empty!”<<endl;
 else
 { //display value at top to be delete
 cout<<”Popped value:”<<data[top]<<endl;
 top=top-1;
 //top will hold to new index
 }//end if
}//end pop

3.9 push()and pop() operations in stack implementation array

 initially stack empty after
 stack empty sequence of deletions

	

	

3.10 stackTop() operation

• stackTop() operation is used to get value at the top of the stack
• stackTop() doesn’t delete item. The function only retrieve item at top of

stack
• stackTop() implementation is shown in Program 8.7

1
2
3
4
5
6
7
8

// Program 8.7
char stackTop()
{ //function to get top value of stack
 if(isEmpty())
 cout<<”Sorry, stack is empty!”<<endl;
 else
 return data[top];
}//end stackTop

4.0 LINKED LIST IMPLEMENTATION OF STACK

4.1 Introduction

• In stack implemented using linked list, the number of elements in stack is not
restricted to certain size.

• It implement dynamic memory creation, whereby memory will be assigned
to stack when a new node is pushed into stack, and memory will be
released when an element being popped from the stack.

• Stack using linked list implementation can be empty or contains a series of
nodes.

• Each node in a stack must contain at least 2 attributes:
o data – to store information in the stack.
o pointer next, which store address of the next node in the stack

4.2 Basic operation of stack

• createStack() – to initialize top
• push() – insert item onto stack
• pop() – delete item from stack
• isEmpty() – check whether a stack is empty.
• stackTop() – get item at top
• isFull() operation is not needed since elements can be inserted into stack

without limitation to the stack size.
• push() and pop() operations can only be done at the top ~ similar to add

	

	

and delete in front of the linked list.

4.3 push() and pop() operations in stack implementation linked list

4.4 Declaration of a linked list implementation of Stack

• Two declarations are needed
o Declaration of class node
o Declaration of class stack
o Class stack has one attribute, which is top

• Declaration of stack implementation linked list is as shown in Program 8.8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Program 8.8
class nodeStack
{
 int data;
 nodeStack *next;
};

class stack
{
 private: //pengisytiharan ahli data
 nodeStack *top;
 public: //pengisytiharan ahli fungsi
 void createStack(); //set Top to NULL
 void push(int); //insert item into stack
 void pop(); //delete item from stack
 int stackTop(); //retrieve item at top stack

	

	

17 };

4.5 createStack() operation

• Creating a stack will initialize top to NULL – indicating that currently, there is
no node in the stack.

• createStack() implementation is as shown in Program 8.9

1
2
3
4
5

// Program 8.9
void stack::createStack()
{
 top=NULL;
}

4.6 isEmpty() operation

• isEmpty() will return true if stack is empty, top is NULL.
• isEmpty() implementation is as shown in Program 8.10

1
2
3
4
5

// Program 8.10
bool stack::isEmpty()
{
 return (top=NULL);
}

4.7 push() operation

• There are 2 conditions for inserting element in stack:
o Insert to empty stack.
o Insert item to non empty stack : stack with value.

• Push to empty stack

o In this situation the new node being inserted, will become the first item
in stack.

STEP 1 : newnode-> next = head;
STEP 2 : head = newnode;

• Push to non empty stack

o This operation is similar to inserting element in front of a linked list. The

	

	

next value for the new element will point to the top of stack and head
will point to the new element.

STEP 1 : newnode-> next = head;
STEP 2 : head = newnode;

• push() implementation is shown in Program 8.11

1
2
3
4
5
6
7
8
9

10
11
12
13

// Program 8.11
void stack::push(int newitem)
{ //create newnode
 nodeStack *newnode;
 newnode = new (nodeStack);
 if(newnode == NULL)
 cout<<”Cannot allocate memory..”<<endl;
 else
 { newnodeàdata = newitem;
 newnodeànext = head;
 head = newnode;
 }// end if
}//end push operation

4.8 pop() operation

• Pop operation can only be done to non-empty stack. Before pop()
operation can be done, isEempty() operation must be called in order to
check whether the stack is empty or has item in the stack. If isEmpty()
function return true, pop() operation cannot be done.

• During pop() operation, an external pointer is needed to point to the
delete node. In the figure below, delnode is the pointer variable to point
to the node that is going to be deleted.

• Steps to delete a node in stack implementation linked list
STEP 1 : delnode = head;
STEP 2 : head = delnode -> next; or head = head->next;
STEP 3 : delete(delnode);

	

	

• pop() implementation is shown in Program 8.12

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// Program 8.12
void stack::pop()
{ nodeStack *delnode;
 if(isEmpty())
 cout << ”Sorry, cannot pop item from stack.
 Stack is still empty!”<<endl;
 else
 { delnode = head;
 Cout << ”Item to be popped from stack is:
 “<<stackTop()<<endl;
 head = delnodeànext;
 delete(delnode);
 }// end else
}//end pop

4.9 stackTop() operation

• stackTop() is used to retrieve item at the top of stack
• isEmpty()function is needed to check whether the stack is empty. If

isEmpty()return True, the stack is empty and stackTop() cannot be
implemented.

• stackTop() implementation is shown in Program 8.13

1
2
3
4
5
6
7

// Program 8.13
int stack::stackTop()
{ if(isEmpty())
 cout<<”Sorry, stack is still empty!”<<endl;
 else
 return headàdata;
}//end check item at top

5.0 STACK APPLICATION

5.1 Stack Application Examples

• Check whether parentheses are balanced (open and closed parentheses

	

	

are properly paired)
• Evaluate algebraic expressions.
• Creating simple calculator
• Backtracking (example. Find the way out when lost in a place)

5.2 Example 1 – To check for balanced parentheses

• Stack can be used to recognize balanced parentheses in an expression.
• Examples of balanced parentheses.

o (a+b), (a/b+c), a/((b-c)*d)
o In the example, open and closed parentheses are properly paired.

• Examples of not balance parentheses.
o ((a+b)*2 and m*(n+(k/2)))
o In the example, open and closed parentheses are not properly

paired.
• Check for balanced parentheses algorithm is given in Algorithm 8.1 below

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// Algorithm 8.1
create(stack);
continue = true;
while(not end of input string) && continue
{ ch = getch();
 if ch = ‘(‘ || ch = ‘)’
 { if ch = ‘(‘
 Push(stack, ‘(‘);
 else if isEmpty(stack)
 continue = false;
 else
 Pop(s);
 } // end if
}// end while
if(end of input && isEmpty(stack);
 cout<<”Parentheses are Balanced..”<<endl;
else
 cout<<”Parenthees are Not Balanced..”<<endl;
// algorithm ends

• Criteria for checking balanced parentheses in an expression
o Every ‘(’ read from a string will be pushed into stack.
o The open parentheses ‘(’ will be popped from a stack whenever the

closed parentheses ‘)’ is read from string.
o An expression have balanced parentheses if :

§ Each time a “)” is encountered it matches a previously
encountered “(“.

§ When reaching the end of the string, every “(“ is matched and
stack is finally empty.

• An expression does NOT have balanced parentheses if :

	

	

§ When there is still ‘)’ in input string, the stack is already empty.
§ When end of string is reached, there is still ‘(‘ in stack.

• Example of checking for balanced parentheses

o Expression : a (b (c))
o The expression has balance parentheses since when end of string is

found the stack is empty.
o Example of checking balanced parentheses is as in the figure below:

• Example of checking for imbalanced parentheses
o Expression: a (b (c))) f
o The expression does not have balance parentheses.
o The third “)” encountered does not has its match since the stack is

empty.
o Example of checking for unbalanced parentheses is in the figure

as follows:

Cannot	 popped,	
stack	 is	 empty.	 	

The	
parentheses	 are	
not	 balanced.	

	

	

5.3 Example 2 – Algebraic expression

• One of the compiler’s task is to evaluate algebraic expression.
• Example of assignment statement:

y = x + z * (w / x + z * (7 + 6))

• The compiler must determine whether the expression is syntactically
legal algebraic expression before evaluation can be done on the
expression.

• 3 algebraic expressions are :
o Infix,
o Prefix
o Postfix

5.4 Infix Expression

• The algebraic expression commonly used is infix.
• The term infix indicates that every binary operators appears between

its operands.
• Example of the syntax:

 A + B
 operand operator operand

• Example of infix expression:

A + B * C
A + (B * C)
(a + b) * c

• To evaluate infix expression, the following rules were applied:

o Precedence rules.
o Association rules (associate from left to right)
o Parentheses rules.

5.5 Prefix and postfix expressions

• Alternatives to infix expression
• Prefix : Operator appears before its operand.

 + A B

 operator operand operand

• Prefix Examples:

* c d
+ a * b c

	

	

* + a b c

• Postfix : Operator appears after its operand.

 A B +
operand operand operator

• Postfix Examples:

b c *
a b c * +
a b + c *

• Infix, prefix and postfix examples

Infix Prefix Postfix

a + b + a b a b +

a + (b * c) + a * b c a b c * +

(a + b) * c * + a b c a b + c *

• The advantage of using prefix and postfix is that we don’t need to use

precedence rules, associative rules and parentheses when evaluating
an expression.

5.6 Converting infix to prefix

• Steps to convert infix expression to prefix:
b + c * 3 / 2 - 4

STEP 1 : Determine the precedence. Add parentheses to the infix
expression based on the precedence, associative and parentheses rules.

STEP 2: Move forward the operators to closest open parentheses at the
left side of them. Then, remove the parentheses.

	

	

• More examples

5.7 Converting infix to postfix

• Steps to convert infix expression to postfix:

a + b / c

STEP 1: Add parentheses to the postfix expression based on the
precedence, associative and parentheses rules.

STEP 2: Move forward the operators to closest close parentheses at the
right side of them. Then, remove the parentheses.

	

	

• More examples

1. a + b = (a + b)
 = a b +

2. a + b * c = (a + (b * c))
 = a b c * +

3. a + b * (c – d) / (p – r)
 = a + (b * (c – d)) / (p – r)
 = (a + ((b * (c – d)) / (p – r)))
 = a b c d - * p r - / +

5.8 Convert infix to postfix expression using stack

• Stack operations, such as push(), pop() and isEmpty() will be used to solve
this problem.

• Algorithm to convert infix to postfix expression is as given in Algorithm 8.2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Algorithm 8.2
create(s);
push(s, ‘#’);
while (not end of infix input)
{ ch = getch // next input character
 if (ch is an operan)
 add ch to postfix notation;
 if (ch = ‘(‘)
 push(s, ch)
 if (ch = ‘)‘)
 { ch = pop(s);
 while (ch != ‘(‘)
 { add ch to postfix notation;
 ch = pop(s);
 }
 if (ch is an operator)

 {
while (!isEmpty(s) & (precedence(stacktop()) >=

precedence(ch)))
 { chpop = pop(s);
 add chpop to postfix notation;
 }
 push(s, ch);
 }

}
while (stacktop() != ‘#’)
{ ch = pop(s);
 add ch to postfix notation;
}

	

	

Note: Parenthetical expression operators () are in the highest precedence
level compared to others.

• Example 1 - Converting infix to postfix expression using stack

 A + B * C – D / E

Infix Stack Postfix
A + B * C – D / E #

 + B * C – D / E # A
 B * C – D / E # + A

 * C – D / E # + A B
 C – D / E # + * A B

 – D / E # + * A B C
 D / E # - A B C * +

 / E # - A B C * + D
 E # - / A B C * + D

 # - / A B C * + D E
 # A B C * + D E / -

• Example 2 - Converting infix to postfix expression using stack

A * B – (C + D) + E

	

	

Infix Stack Postfix
A
*
B
–
(

C
+
D
)
+
E

 *
B
–
(

C
+
D
)
+
E

A

B
–
(

C
+
D
)
+
E

* A

 –
(

C
+
D
)
+
E

* A B

 (
C
+
D
)
+
E

- A B *

C
+
D

- (A B *

	

	

5.9

Evaluate postfix expression using stack

• Steps to evaluate postfix expression
o If the character read from postfix expression is an operand, push

operand to stack.
o If the character read from postfix expression is an operator, pop the

first 2 operand in stack and implement the expression using the
following operations:

pop(opr1) dan pop(opr2)
result = opr2 operator opr1

o Push the result of the evaluation to stack.
o Repeat steps 1 to steps 3 until end of postfix expression
o Finally, at the end of the operation, only one value left in the stack.

The value is the result of postfix evaluation.

)
+
E

+
D
)
+
E

- (A B * C

D
)
+
E

- (
+

A B * C

)
+
E

- (
+

A B * C D

+
E

- A B * C D +

 E # + A B * C D +
-

 # + A B * C D +
-

E

 # A B * C D +
-

E

+

	

	

• Algorithm to evaluate postfix expression is given in Algorithm 8.3

1
2
3
4
5

// Algorithm 8.3
create(s);
while(not end of postfix notation)
{ ch = getch();
 if (ch is operand)
 push(ch);
 else //if ch = operator
 {
 operan1 = pop();
 operan2 = pop();
 result = operan2 ch operan1;
 push(result);
 } //end else
}
pop(result);

• Example 1 - Evaluating postfix expression using stack

2 4 6 + *

Postfix Ch Opr Opn1 Opn2 Result Stack

2 4 6 + *
4 6 + * 2 2

6 + * 4 2 4
 + * 6 2 4 6

 * + + 6 4 10 2 10
 * * 10 2 20 20

• Example 2 - Evaluating postfix expression using stack

2 7 * 18 - 6 +

Postfix Ch Opr Opn1 Opn2 Result Stack
2 7 * 18 – 6 +

7 * 18 – 6 + 2 2
* 18 – 6 + 7 2 7
 18 – 6 + * * 7 2 14 14

 – 6 + 18 14 18
6 + – – 18 14 -4 -4

 + 6 -4 6
 + + 6 -4 2 2

	

