
	

	

MODULE 6

SEARCHING
DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
UNIVERSITI TEKNOLOGI MALAYSIA

	

	

	

OBJECTIVES FOR STUDENTS

1. Able to describe the searching technique concept and the purpose of searching

operation.

2. Develop C++ code to implement the basic searching algorithms.

3. Able to analyze the efficiency of the searching technique.

4. Able to develop C++ code to implement searching technique in problem solving.

KEY CONCEPT

1.0 INTRODUCTION TO SEARCHING

1.1. Searching definition - A process to determine whether an element is a

member of a certain data set or a collection of elements. The process
also aims to find the location of the element with a specific value (key)
within the collection of elements.

1.2. The process can also be seen as an attempt to search for a certain

record in a file
i. Each record contains data field and key field
ii. Key field is a group of characters or numbers used as an identifier

for each record
iii. Searching can done based on the key field.

1.3. Consider the following data set of employee record. Searching can be

done based on certain field: empID, or empl_IC, or empName.
• To search empID = 122, give us the record value at index 1.

index empID Empl_IC EmpName Post

[0] 1111 701111-11-1234 Ahmad Faiz Azhar Programmer

[1] 122 800202-02-2323 Mohd. Azim Bin
Mohd. Razi

Clerk

[2] 211 811003-03-3134 Nurina Raidah Bt
Abdul Aziz

System Analyst

1.4. Among the popular searching techniques are as follows:

	

	

i. Sequential search
ii. Binary Search
iii. Binary Tree Search
iv. Indexing

1.5. Similar with sorting, Searching can also be implemented in two cases,

internal and external search.
• External search – only implemented if searching is done on a very

large size of data. Half of the data need to be processed in RAM
while half of the data is in the secondary storage.

• Internal search – searching technique that is implemented on a
small size of data. All data can be load into RAM while the
searching process is conducted.

2.0 BASIC SEQUENTIAL SEARCH

2.1. Used for searching that involves records stored in the main memory

(RAM).

2.2. Basic sequential search also used to search an element from unsorted

list.

2.3. Basic sequential search is the simplest search algorithm, but is also the

slowest and can only be used to search from a small list. The efficiency
of sequential search is low compared to other searching techniques.

2.4. In a sequential search, (1) every element in the array will be examine
sequentially, starting from the first element; (2) The process will be
repeated until the last element of the array or until the searched data is
found.

2.5. Searching strategy :
• Examines each element in the array one by one (sequentially) and

compares its value with the one being looked for – the search key.

• Search is successful if the search key matches with the value being
compared in the array. Searching process is terminated.

• else, if no matches is found, the search process is continued to the

last element of the array. Search is failed array if there is no match
found from the array.

	

	

2.6. Basic sequential implementation are given in Program 6.1:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Program 6.1
// Search items in an array of ascending order.
int SequenceSearch(int search_key,

 const int array [],
 int array_size)

{ int p;
 int index =-1;
 //-1 means record is not found
 for (p = 0; p < array_size; p++){

 if (search_key == array[p]){
 indeks = p;//assign current array index
 break;
 }//end if

 } //end for
 return index;

} //end function

2.7. Figure 6.1 shows an example of basic sequential search implementation

with search key 22 and an array of integer [11 33 22 55 44].

p = 0 p = 1

p = 0 and return 2
Figure 6.1 The basic sequential search implementation with search key

22

2.8. Example of basic sequential search implementation with search key 25
and an array of integer [11 33 22 55 44]. Every element in the array will
be examined using the for loop and during the value of variable p will
be increment from 0 to 4. No match found and the value of variable
found and index will remind false and -1 respectively.

Or until the search process has
reached the last element of the array

Every element in the
array will be
examined until the
search key is found
.
	

	

	

Figure 6.2 The basic sequential search implementation with search key
25

2.9. Basic sequential search analysis:
• Searching time for sequential search is O(n).
• If the searched key is located at the end of the list or the key is not

found, then the loop will be repeated based on the number of
element in the list, O(n).

• If the list can be found at index 0, then searching time is, O(1).

2.10. Problem and improvement of basic sequential search technique.

• Problem:
– Search key is compared with all elements in the list, O(n) time

consuming for large datasets.
• Solution to minimize the searching process.

– The efficiency of basic search technique can be improved by
searching on a sorted list.

– For searching on ascending list, the search key will be compared
one by one until :
i. The searched key is found.
ii. Or until the searched key value is smaller than the item

compared in the list.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// Program 6.2
// Improved Basic Search
// For searching on ascending list

int SortedSeqSearch (int search_key, const int array[],int
array_size)
{ int p;
 int index = -1;
 //-1 means record not found
 for (p = 0; p < array_size; p++)
 { if (search_key < array [p])
 break;
 // loop repetition terminated
 // when the value of search key is
 // smaller than the current array element
 else if (search_key == array[p])
 {
 index = p;

the searched key
value is smaller
than the item
compared in the
list.

	

	

19
20
21
22
23
24

 // assign current array index
 break;
 } // end else-if
 }//end for
 return index; // return the value of index
} //end function

2.11. Example of the improved basic sequential search with search key 25
and an array of integer [11 22 33 44 55]:

Figure 6.3 The improved basic sequential search implementation with

search key 25

2.12. Conclusion on steps to execute sequential search function on a sorted

list:

the searched
key is found

	

	

• If the elements in the list are not in a sorted (asc/desc) order, loop
will be repeated based on the number of elements in the list.

• When the list is not sorted the loop is repeated 5 times, compared to
3 times if the list is in sorted order as shown in the previous example.

• If the list is sorted in descending order, change operator “<“ to
operator “>” in the loop for.

3.0 BINARY SEARCH

3.1. The drawback of sequential search algorithm is having to traverse the

entire list, O(n).

3.2. Sorting the list does minimize the cost of traversing the whole data set,

but we can improve the searching efficiency by using the Binary Search
algorithm.

3.3. Consider a list in ascending sorted order. For a sequential search,

searching is from the beginning until an item is found or the end is
reached.

3.4. Binary search improve the algorithm by removing as much of the data

set as possible so that the item is found more quickly.

3.5. Search process is started at the middle of the list, then the algorithm

determine which half the item is in (because the list is sorted).
§ It divides the working range in half with a single test. By repeating

the procedure, the result is an efficient search algorithm-O(log2 n).

3.6. Implementation of Binary Search - starts by comparing the search key

with the element at the middle.
i. If the value matches, it will be return to the calling function (index =

MIDDLE)
ii. If the search key < the middle element, search will be focused on

the elements between the first element to the element before the
middle element (MIDDLE -1)

iii. If the search key is not found, the element at the middle of the first
element and the MIDDLE -1 element will be compared with the
search key.

iv. If the search key > the middle element, search will only be focused
on the elements between the second MIDDLE element to the first
MIDDLE element.

v. Search is repeated until the searched key is found or the last
element in the subset is traversed (LEFT > RIGHT).

	

	

3.7. Figure 6.4 shows an example of the implementation of Binary Search
with search key 35 in an array of integer [11 22 33 44 55 66 77] .

array

5522 443311
[0] [1] [2] [3] [4] [5] [6]

7766

5522 443311
[0] [1] [2] [3] [4] [5] [6]

7766

MIDDLE

[0] [1] [2]
22 3311

MIDDLE

[2]
33

MIDDLE

LEFT>RIGHT

Figure 6.4 The implementation of Binary Search with search key 35

3.8. Program 6.3 is the Binary search function. The numbers i-v in the

comment are referring to the implementation described at point 3.6.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Program 6.3
// Search items in an array of ascending order.
int binary_search(int search_key, int array_size,
 const int array [])
{ bool found = false;
 int index = -1 //-1 means record not found
 int MIDDLE,
 LEFT = 0,
 RIGHT = array_size-1;
 while ((LEFT<= RIGHT) && (!found)) // v.
 { MIDDLE = (LEFT + RIGHT)/2;// Get middle index
 if (array[MIDDLE] == search_key)
 { index = MIDDLE;
 found = true;
 }
 else if (array[MIDDLE] > search_key) //ii
 RIGHT= MIDDLE– 1; //iii search is focused
 // on the left side of list
 else
 LEFT= MIDDLE+ 1 //iv. search is focused
 // on the right side of the list
 } //end while
 return index; //i

	

	

24 }//end function

3.9. Consider the implementation of the Binary Search on a sorted list [11 22

33 44 55 66 77] with search key 35.
a. Search starts by obtaining the MIDDLE index of the array:

MIDDLE= (0 + 6) / 2= 3 { First MIDDLE index}
b. search_key 35 is compared with the element at the fourth index in

the array, which is array[3] with the value 44.
c. search_key < MIDDLE value, therefore search will be focused on the

elements between the first index and the third index only (index 1 to
MIDDLE-1)

d. Process to obtain MIDDLE index is repeated:
MIDDLE = (0 + 2) / 2= 1 { second MIDDLE index}

e. search_key 35 is compared with the element at the second index,
which is array[1] with the value 22

f. search_key > MIDDLE value, therefore search will be focused only on
the elements between the second MIDDLE index to the first MIDDLE
index.
MIDDLE = (2 + 2) / 2= 2 { third MIDDLE index}

g. Element at the third index, array[2] with the value 33 is not equal to
the value of the search key.

h. Search process has reached the last element of the traversed
subset, therefore search is terminated and assumed fail.

i. To search from the list sorted descending, change operator “ > ” to
operator “ < “ to the following statement :

 else if (array [MIDDLE] > search_key)
 RIGHT = MIDDLE – 1;

3.10. Consider another implementation of the Binary Search on a sorted list

[12 14 16 18 20 2 24 26 28 30] with search key 22 and the array size is 10
in Figure 6.5.

	

	

Figure 6.5 The implementation of Binary Search with search key 22

3.11. Binary Search analysis:

• Binary Search starts searching by comparing element in the middle.
Thus the searching process start at n/2 for a list size = n.

• If the middle value does not matches with the search key, then the
searching area will be reduced to the left or right sublist only. This will
reduce the searching area to ½ n.

• From half of the list, the second middle value will be identified.
Again, if the middle value does not matches with the search key,
the searching area will be reduced to the left or right sub list only.
The searching area will reduce ½ (½ n).

• The process of looking for middle point and reducing the searching
area to the left or right sublist will be repeated until the middle value
is equal to the middle value (search key is found) or the last value in
sublist has been traverse.

• If the repetition occur k times, then at iteration k, the searching area
is reduced to (½)kn.

• Figure 6.6 shows the reducing size for binary search area.

	

	

• At iteration k for array size = n , searching area will be reduced from
n to (½)kn.

Figure 6.6 The reducing size for binary search area

• Figure 6.7 shows an example of the reducing size for binary search
area with 1 billion data.

• It can be concluded that to search item in the middle of the list, the
complexity is O(1).

• Searching item at the back or front of the list is faster with only O(29).
• However, searching item at front of the list is the worst case of Binary

Search with O(29).

Figure 6.7 The reducing size for binary search area with 1 billion data

k

n

n

(1/2) k n

	

	

PROGRAMMING EXERCISES

LAB 1: BASIC SEQUENTIAL SEARCH

Given the following Program 6.4, type and run the program to perform the tasks given
below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Program 6.4
#include<iostream.h>
int SequentialSearch(int [], int, int);

void main()
{ int num[100];
 int k, target, j;
 char ans = ’y’;

cout << "Please enter size of the array:";
 cin >> k;
 for(int i = 0; i < k; i++)
 { cout << "num[" << i << "]=";
 cin >> num[i];
 }
 do {

 cout << "\nEnter the search key :";
 cin >> target;
 j = SequentialSearch(num, k, target);
 if (j == -1)
 cout << "Failed" << endl;
 else
 cout << "Found at num[" << j << "]\n";
 cout << ”Find another number?:”;
 cin >> ans;
 } while (ans == ’y’);

}
int SequentialSearch(int a[], int n, int target)
{ int i;
 for (i = 0; i < n; i++)
 if (a[i] == target)
 return i;
 return -1;
}

i. Read the input for num array which has the following 10 ascending numbers:

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

num 8 4 10 5 20 4 15 23 12 11
Figure 6.8 Unsorted data

	

	

ii. Perform searching with the following key values: 5, 4, and 25.

iii. What are the output be when performing a search for the values?

LAB 2: BINARY SEARCH

Refer to the given Program 6.4 in Lab 1, replace the SequentialSearch() function with
BinarySearch()function given below.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Program 6.5
int BinarySearch(int a[], int n, int target)
{ int first = 0;
 int last = n - 1;
 int mid;
 while (first <= last)
 { mid = (first + last) / 2;
 if(target == a[mid])
 return mid;
 else if(target < a[mid])
 {
 last = mid - 1;
 cout << "Middle value:" << mid <<
 "\tfirst:" << first << "\tlast:"
 << last << endl;
 }
 else
 {
 first = mid + 1;
 cout << "Middle value:" << mid <<
 "\tfirst:" << first << "\tlast:"
 << last << endl;
 }
 }
 return -1;
}

Based on Program 6.4 and the function in Program 6.5, perform the following
tasks:

a. Read num array input with the following 10 ascending numbers:

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

num 2 5 6 8 10 12 15 16 20 21

Figure 6.9 Sorted data for num array

b. Perform search with the value of search key 5, 20 and 25. What will be the
output?

iv.

	

	

LAB 3: BASIC SEQUENTIAL SEARCH AND BINARY SEARCH ALGORITHMS

Carefully study the following program template and the sequential searching function on
a sorted list called SeqSearch().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
34
35

//Program 6.6
#include <iostream.h>
#include <conio.h>
#include <stdio.h>

class Person
{ public:
 int key;
 char name[30];
 char uta[30];
 public:
 Person()
 { Person(0,"","");
 }
 Person(int key, char name[], char uta[])
 { this->key=key;
 strcpy(this->name, name);
 strcpy(this->uta, uta);
 }
};

/***************Function prototypes ***********************/
void display_array(Person list[], int size, char title[]);
void QuickSort(Person list[], int first, int last);
int Divider(Person T[], int awal, int last);
int SeqSearch(int key, Person list[], int size);
int Binary_Search(int key, Person list[], int size);
void pause();
/**/
const int COUNT = 14; // number of array elements.
void main(void)
{ // array T, object Person
 Person T[COUNT] = { Person(21, "Utada", "ichi"),
 Person(61, "Hikaru", "ni"),
 Person(11, "Ito", "san"),
 Person(31, "Yuna", "shi"),
 Person(79, "Hamasaki", "yon"),
 Person(83, "Ayumi", "go"),
 Person(68, "Koda", "roku"),
 Person(78, "Kumi", "shichi"),
 Person(96, "Namie", "nana"),
 Person(87, "Amuro", "hachi"),
 Person(57, "Otsuka", "ku"),
 Person(88, "Ai", "kyu"),
 Person(69, "Kaoru", "jyuu"),

	

	

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

 Person(49, "Amane", "jyuichi")

 };
 display_array(T, COUNT, "Original Array:");
 pause();

 /********** SORT ******************/
 cout << "****** SORTING*********\n\n";
 QuickSort(T, 0, COUNT-1);
 display_array(T, COUNT, "Sorted Array:");
 pause();

 /********** Search ******************/
 cout << "****** SEARCHING *********\n\n";
 int key; // search key

int index; //the array index for the element found
 //from searching process

 cout <<"Enter search key: ";
 cin >> key;

 // call the search function here
 index = SeqSearch(key,T,COUNT);
 // index = Binary_Search(key,T,COUNT);

 cout << "\n\nSearch result:\n";
 cout << "\tIndex element: " << index << endl;
 if (index>-1)
 { cout << "\tKey: " << T[index].key << endl;
 cout << "\tName: " << T[index].name << endl;
 cout << "\tTitle: " << T[index].uta << endl;
 }
 else
 { cout << "\tRecord not found!!!" << endl;
 }
 pause();
}

/**
 Function: display_array
 Description: Print object Person from array

***/
void display_array(Person list[], int size, char title[])
{int i;
 cout << title <<endl <<endl;
 cout <<" Key \t Name \t Title\n";
 cout <<"-----\t -------\t------- \n";

 for (i=0; i<size; i++)

	

	

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

 cout << list[i].key <<"\t"<< list[i].name
 <<"\t\t"<< list[i].uta <<"\n";
 cout << endl;
}

/***
 Function: QuickSort
 Description: Execute Quick Sort Algorithm
***/
void QuickSort(Person list[], int first, int last)
{ int cut;

 if (first<last)
 { cut = Divider(list, first, last);
 QuickSort(list, first, cut);
 QuickSort(list, cut+1, last);
 }
}

int Divider(Person T[], int first, int last)
{ int pivot;
 int loop, divide, frombottom, fromtop;
 Person temp;

 pivot = T[first].key;
 frombottom = first; fromtop = last;
 loop = 1;

 while (loop)
 { while (T[fromtop].key>pivot)
 { // search for values less than pivot
 // from the top of array
 fromtop--;
 }

 while (T[frombottom].key<pivot)
 { // search for values bigger than pivot
 // from bottom of array
 frombottom++;
 }

 if (frombottom < fromtop)
 { // swap location of pivot
 temp = T[frombottom];
 T[frombottom] = T[fromtop];
 T[fromtop] = temp;
 } else
 { loop = 0;
 divide = fromtop;
 }

	

	

136
137
138
139
140
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

 } //end while (loop)
 return divide;
 } //end function Divider

/**
 Function: SeqSearch
 Description: Execute Sequential Search Process
 Parameters:
 key, which is the search key
 list, which is the array, assume the array list is
 sorted in ascending order
 size, the number of records in array
 Returns:
 If record is found, the record index will be returned.
 Otherwise, if not found, value -1 will be returned.
**/

int SeqSearch(int key, Person list[], int size)
{
 int i;
 for (i = 0; i < size; i++)
 { if (key == list[i].key) return i;
 // if record is found
 if (key < list[i].key) return -1;
 // if search key > current record key,
 // no need to continue search on
 // the remaining records
 }
 return -1;
}
/**
 Function: Binary_Search
 Description: Execute Binary Search Process
 Parameters:
 key, which is the search key
 list, which is the array, assume the array list
 is sorted in ascending order
 size, the number of records in array
 Returns:
 If record is found, the record index will be returned.
 Otherwise, if not found, value -1 will be returned.
**/
int Binary_Search(int key, Person list[], int size)
{ // local variable
 bool found = false;
 int MIDDLE, LEFT = 0, RIGHT = size - 1;
 int i = -1;
}

	

	

206
207
208
209
210
211
212
213
214
215

/***
 Function: pause
 Description: pausing the screen for awhile to view output
***/

void pause()
{
 cout << "\n\nPress any key....\n";
 getch();
 }

Based on the given code modify the program according to the following specification:

a. Write a new search function Binary_Search() that executes binary search

algorithm to replace function SeqSearch().

b. Change the order of the array from ascending to descending by modifying the

sort function QuickSort().Write again both search function SeqSearch() and
Binary_Search() based on descending order.

c. Execute the program and see if your searching functions give out the correct

output.

EXERCISES

EXERCISE 1: SEQUENTIAL SEARCH ALGORITHM

Program 6.7 is a sequential search function.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// Program 6.7
int SequenceSearch(int search_key, int array[],int array_size)
{ int p;

int index = -1;
// -1 means record is not found

for (p = 0; p < array_size; p++)

 {
if (search_key == array[p])
{ indeks = p;
 // assign current array index
 break; // terminate searching

 } // end if
 } // end for
 return index;
 // return location of value
} // end function

	

	

In the following figure, DATA is an array with the size of 10, which stores integer
values.

index [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

DATA 49 21 34 35 40 7 15 26 12 4

Figure 6.10 Unsorted data

a. Based on the given function, show each steps of the search process on the
DATA array based on the following search key values.
i. 49
ii. 4
iii. 37

b. Compare the searching time for both search keys. Based on the searching
time, discuss the efficiency of the searching technique.

v.
c. Explain the use of break statement to the for loop in the function in Program

6.7.

In the following figure, the array DATA1 has been sorted in ascending order.

index [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

DATA1 4 7 12 15 21 26 34 35 40 49

Figure 6.11 Sorted data

d. Rewrite the function in Program 6.7 to execute searching on a sorted list.

e. Based on your answer in question (d), show each steps of the search
process on the DATA1 array based on the following search key values.

i. 4
ii. 37

f. Based on your answer in question (e), explain how and why is the
sequential search on a sorted list better than on an unsorted list if the value
being searched is not in the list.

EXERCISE 2: SEQUENTIAL SEARCH ALGORITHM AND THE ANALYSIS

Assume that r is an array consisting n number of records. Each record has a key field k,
and the key for the i-th record is referred to as r[i].k. The records in the array r are in an
unsorted order.

	

	

a. Write a sequential search function in C++, for the array r, with the purpose
of searching a given record key. Use the most efficient algorithm that you
have learned.

b. If the array r are in a sorted order, write a sequential search function in C++

that will execute a search on a sorted array based on a given search key.

c. Discuss the difference in the efficiency of the algorithm for the answers
gave in questions (a) and (b).

EXERCISE 3: BINARY SEARCH ALGORITHM

Program 6.8 is a binary search function.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Program 6.8
int binary_search(int search_key, int array_size,
const int array [])
{

bool found = false;
int index = -1 //-1 means record not found
int MIDDLE,
LEFT = 0,
RIGHT = array_size - 1;

while ((LEFT <= RIGHT) && (!found))
{ MIDDLE = (LEFT + RIGHT)/ 2;
 // Get middle index

if (array[MIDDLE] == search_key)
{ index = MIDDLE;

found = true;
}
else if (array[MIDDLE] > search_key)

RIGHT = MIDDLE – 1;
// search is focused

 // on the left side of list
else

LEFT = MIDDLE + 1
 // search is focused
 // on the right side of the list

} // end while
 return index;
} // end function

a. Discuss the differences between sequential search and binary search

algorithms.

b. Based on the function in Program 6.8 show each steps of the search
process on the DATA array in Figure 6.11 on the following search key values.

	

	

i. 4
ii. 37

c. State the values for variables LEFT, RIGHT and MIDDLE found at each step.

EXERCISE 4: BINARY SEARCH ALGORITHM

Give 2 classes of search. State which search is suitable for huge records and which is
suitable for small number of records.

a. Given an ascending order array as follows:

index [0] [1] [2] [3] [4] [5] [6]

Array 2 5 8 10 19 21 35

Figure 6.12 Sorted data

b. Give right and left values in a box that are involved in the process of binary

search. Assume that the search key is 15. Fill in the values in Figure 6.13.

 Array

2 5 8 10 19 21 35

 Middle = ….

 Middle = .…

 Middle =

Figure 6.13 Binary search

EXERCISE 5: BASIC SEQUENTIAL SEARCH AND BINARY SEARCH ALGORITHMS

The following class diagram named month has 2 attributes, key – an integer value for
month and monthName – the char[] value for month. The following array figure shows an
array of class month, named arrayA with 7 elements. The array is sorted in descending
order.

	

	

Month
key : int
monthName : char[]

Figure 6.14 Class diagram month

 [0] [1] [2] [3] [4] [5] [6]

Key 12 10 8 7 5 4 2
monthNa
me

Decemb
er

Octobe
r

August July Ma
y

April February

Figure 6.15 arrayA

Answer the following questions based on arrayA.

a. Complete the sequeantial search function SeqSearch() below :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// Program 6.9
int SeqSearch(int search_key, month arrayA[], int array_size)
{
 int p;
 int index = -1;
 for (p = 0; p < array_size; p++)
 {
 if _______________________________
 { index = p;
 // if record is found, assign
 // current array index

 break;
 }

 else if _____________________________
 break; // else, no need to //

continue search on the //
remaining records

 } //end for
 return index;
}//end function

b. Complete the binary search function of Binary_Search() below.

	

	

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Program 6.10
int Binary_Search(int search_key, month arrayA[], int array_size)
{
 bool found = false;
 int MIDDLE, LEFT = 0, RIGHT = array_size-1;
 int i = -1;
 while ((LEFT<=RIGHT) && (!found))
 { MIDDLE = ____________________________
 if (arrayA[MIDDLE].key == search_key)
 { i = ________________;
 found = true;
 }
 else if ______________________________
 RIGHT = _______________________
 // search is focused on the left
 // side of the list
 else
 LEFT = ________________________
 // search is focused on the right
 // side of the list
 } // end while
 return i;
} // end function

c. Complete the table below to show the values of the variables i, left, right,

middle and found in order to search 12 as the search key during the
searching process of Binary_Search() function. The searching process is
implemented in the arrayA, which has been sorted in descending order.

i LEFT RIGHT MIDDLE FOUND

EXERCISE 6: BASIC SEQUENTIAL SEARCH AND BINARY SEARCH ALGORITHMS

Program 6.11 is a sequential search function. Based on the array DATA figure below,
answer all the following questions.

1
2
3
4
5
6
7
8
9

// Program 6.11
int SequenceSearch(int search_key, int array[], int array_size)
{ int pass;

int index = -1;
//-1 means record is not found

for (pass = 0; pass < array_size; pass++)
{

if (search_key == array[pass])

	

	

10
11
12
13
14
15
16
17
18

{ index = pass;
 // assign current array index
 break; // terminate searching

 } // end if
 } // end for
 return index;
 // return location of value
} // end function

index [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

DATA 4 8 19 25 34 39 45 48 66 75 89 95

Figure 6.16 DATA

a. The above figure shows an array DATA with the size of 12, which stores
integer values. Determine the value of iteration, pass, array[pass], index
and number of comparisons in the following table format, in each steps of
searching process on the array DATA by using the sequential search
function in Program 6.11 for the following search keys.
i. 45
ii. 22

Iteration pass array[pass] index Number of
comparisons

..

vi. Program 6.12 is a binary search function. Based on the same array figure

above, answer all the following questions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// Program 6.12
int binary_search(int search_key, int array_size,
const int array []){

bool found = false;
int index = -1 //-1 means record not found
int MIDDLE,
LEFT = 0,
RIGHT = array_size-1;

while ((LEFT<= RIGHT) && (!found))
{ MIDDLE = (LEFT + RIGHT) / 2;
 // Get middle index

if (array[MIDDLE] == search_key)
{ index = MIDDLE;
 found = true;
}
else if (array[MIDDLE] > search_key)

RIGHT= MIDDLE– 1;
// search is focused

 // on the left side of list

	

	

21
22
23
24
25
26
27

else
LEFT = MIDDLE + 1
// search is focused

 // on the right side of the list
} //end while

 return index;
} //end function

b. Based on the above array, determine the value of iteration, LEFT, RIGHT,

MIDDLE, array[MIDDLE], index and number of comparisons like in the table
below, in each steps of searching process on the array DATA by using the
binary search function in Program 6.12 for the following search keys.
i. 45
ii. 22

c. Based on your answers in questions (a) and (b), what can you conclude on

the efficiency of both search algorithms? Explain in term of efficiency and
number of comparisons.

EXERCISE 7: SEARCHING TECHNIQUES AND THE ANALYSIS

Answer the following questions based on the sorted array named marks shown in Figure
6.17.

index [0] [1] [2] [3] --- [19] [20] --- [29] [30] --- [34] --- [38]
marks

51 55 59 60 --- 75 76 --
-

85 86 --- 90 -- 95

Figure 6.17 : Sorted Array, marks

a. Based on the given array in Figure 6.17, assume that your mark in this course is 60
and need to be searched using SortedSeqSearch() function. Show the tracing of
the search using variables index, p, search_Key and found as shown in the table
format below.

index search_Key p found

b. Assume your mark in this course is 90 and need to be searched using Binary

Search function. Show the tracing of your search using variables left, right, middle,
marks[middle] and found as shown in the table format below.

Iteration LEFT RIGHT MIDDLE array[MIDDLE] index Number of
comparisons

..

	

	

left right middle marks[middle] found

c. Fill in the following table with the number of steps and the complexity required in

searching the minimum mark, the average mark (assume 75 is the average) and
the maximum mark. Based on the results, compare and discuss the efficiency of
Binary Search technique and Sequential Search (on sorted data) algorithms in the
three searching cases.

Search Comparisons

Search Key

Linear Search Binary Search
Number
of steps

Complexity Number of steps Complexity

51

75

95

Efficiency Analysis
for the three cases

