MODULE 5

SORTING

DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
 UNIVERSITI TEKNOLOGI MALAYSIA

MODULE 5: SORTING

OBJECTIVES FOR STUDENTS

1. To describe the purpose of sorting technique as operations on data structure.
2. To write source codes for the implementation of simple sort algorithms: Bubble Sort, Insertion Sort and Selection Sort
3. To write source codes for the implementation of divide and conquer sorting algorithms : Merge Sort and Quick Sort.
4. To identify the efficiency of the sorting algorithms and determine the suitable sorting techniques for certain problem.

KEY CONCEPT

1.0 INTRODUCTION TO SORTING

1.1. Sorting definition - A process in which data in a list are organized in certain order; either ascending or descending order.
1.2. Advantages of sorted lists:
i. Easier to understand and analyze data collection.
ii. Searching process will be much faster.

- Sorting Example :
i. Sorted in Ascending order: phone directory and dictionary
ii. Sorted in Descending order; number of scores/points earned by every team in a competition. The winner gets the highest score.
1.3. Sorting Algorithms Categories:
i. An internal sort
- Requires that the collection of data fit entirely in the computer's main memory. Suitable to sort a small size of list.
ii. An external sort
- The collection of data will not fit in the computer's main memory all at once, but must reside in secondary storage. Suitable to sort large
size of data.
1.4. Types of lists to be sorted:
- List of simple data types, such as integers, char or strings
- Examples: list of numbers (int type) or list of book titles (string type) as shown in the figure below:

List of student's
age (int)

22
28
18
23
19

List of Book Titles
(string)

Struktur Data
Learning English
Mathematics for
Kids
Effective
Communication
Learn C++

1.5. Sorting list of records

- Each record contains a field called the key.
- Record key - field that become the identifier to the record.
- For sorting purposes, the records will be sorted based on the sorting key, which is part of the data item that we consider when sorting a data collection.
- Example: A list that contains student's information

Sorting key
The list can be sorted either by student's name, matrix number or CPA.

Indeks	Student Name	Matrix Number	CPA
[0]	Hisham	A5021	3.09
[1]	Zainal	A1051	2.55
[2]	Maria	A2000	3.60
[3]	Adam	A5501	3.00
[4]	Zahid	A2233	2.95

2.0 SORTING PROCESS

2.1. Two main activities in the sorting process:
i. Compare: compare between two elements. If they are not in correct
order, then
ii. Swap: Change the position of the elements in order to get the right order.
2.2. The efficiency of sorting algorithm is measured based on :

- the number of comparisons and
- the number of swapping between elements
2.3. The sorting efficiency is measured based on the execution time of the algorithm when tested using sample cases of data as follows:
- Worst-case analysis considers the maximum amount of work an algorithm will require on a problem of a given size. (Data is totally unsorted).
- Best-case analysis considers the minimum amount of work an algorithm will require on a problem of a given size. (Data is almost sorted).
- Average-case analysis considers the expected amount of work that an algorithm will require on a problem of a given size.

3.0 SORTING ALGORITHMS

3.1. There are several sorting algorithms. In this module, two strategies of sorting techniques will be discussed in detail. They are:
i. Quadratic Sorting Algorithms
ii. Divide and Conquer Sorting Algorithms
3.2. Quadratic Sorting Algorithms work straight-forward and sorting methods is usually people think of sorting things in general. The quadratic sorting algorithms are not very fast and with quadratic efficiency.
3.3. Three quadratic sorting algorithms are:
i. Bubble Sort
ii. Insertion Sort
iii. Selection Sort
3.4. Divide and Conquer Sorting Algorithms strategy solves a problem by :
i. Breaking into sub problems that are themselves smaller instances of the same type of problem.
ii. Recursively solving these sub problems.
iii. Appropriately combining their answers.
3.5. Two types of sorting algorithms which are based on this divide and conquer algorithm:
i. Merge Sort
ii. Quick Sort
4.0 BUBBLE SORT
4.1. Bubble sort is a simple sorting technique in which will arrange the elements of the list by comparing each pair of adjacent items and swapping them if they are in the wrong order.
4.2. To sort an array of record with bubble sort, it works by taking multiple passes over the array with the following main activities
i. Compare adjacent elements in the list
ii. Exchange the elements if they are out of order
iii. Each pass moves the largest (or smallest) elements to the end of the array
iv. Repeating this process eventually sorts the array into ascending (or descending) order.
4.3. Bubble sort is a quadratic algorithm $O\left(n^{2}\right)$. The algorithm only suitable to sort array with small size of data.
4.4. Example of Bubble Sort operation with list of 8 elements.
[0] [1] [2] [3] [4] [5] Pass 1: Unsorted List

1
$>$

1. Compare, $\operatorname{swap}(0,1)$
2. Compare, swap $(1,2)$
3. Compare, no swap
4. Compare, no swap
5. Compare, swap $(4,5)$
6. 99 is in right position
[0] [1] [2] [3] [4] [5]

3	8	12	21	1	99

3	8	12	21	1	99

3	8	12	1	21	99

3	8	12	1	21	99

Pass 3

1. Compare, no swap
2. Compare, no swap
3. Compare, swap $(2,3)$
4. 12 is in right position

1	3	8	12	21	99

Pass 2

1. Compare, $\operatorname{swap}(0,1)$
2. Compare, no swap
3. Compare, no swap
4. Compare, swap $(3,4)$
5. 22 is in right position

Pass 4

1. Compare, no swap
2. Compare, $\operatorname{swap}(1,2)$
3. 8 is in right position

Pass 5

4. Compare, $\operatorname{swap}(0,1)$
5. $1 \& 3$ are in right position DONE
4.5. Bubble Sort implementation:

If statement is used to compare the adjacent elements.

External for loop is used to control the number of passes needed.

```
//Program 5.1
```

// Sorts items in an array into ascending order.
void BubbleSort(dataType data[], int listSize)
\{
int pass, tempValue;
for (pass =1;pass < listSize; pass++)
$\{$
// moves the largest element to the
// end of the array
for (int $x=0 ; x<$ listSize - pass; $x++$)
//compare adjacent elements
if (data[x]>data[x+1])
// swap elements
tempValue $=$ data $[x]$;
data $[\mathrm{x}]=\operatorname{data}[\mathrm{x}+1]$;
data $[x+1]=$ tempValue;
\}
\}
\} // end Bubble Sort

Internal for loop is used to compare adjacent elements and swap elements if they are not in order. After the internal loop has finished execution, the largest element in the array will be moved at the top.
4.6. Example of Bubble Sort implementation to sort array of integer [78 8316 l into ascending order:

pass $=3$ listSize $=5 \quad$ pass $=3 \quad$ listSize $=5$
4.7. Bubble sort analysis:

- To determine the efficiency of Bubble Sort algorithm the following number need to be identified:
- the number of comparison between elements and
- the number of exchange between elements.
- Generally, the number of comparisons between elements in Bubble Sort can be stated as follows:

$$
(n-1)+(n-2)+\ldots . . .+2+1=n(n-1) / 2=O\left(n^{2}\right)
$$

- However, in any cases, (worst case, best case or average case) the number of comparisons between elements are the same.
4.8. An example of Bubble sort analysis for array $\left[\begin{array}{llll}7 & 8 & 3 & 1 \\ \hline\end{array}\right]$:

- The number of comparisons:
$(n-1)+(n-2)+$ \qquad $+2+1=n(n-1) / 2=O\left(n^{2}\right)$
- The number of comparisons for array [78316]:
$(5-1)+(5-2)+(5-3)+(5-4)=4+3+2+1=10$.
4.9. In any cases, (worst case, best case or average case) to sort the list in ascending order the number of comparisons between elements are the same.
i. Worst Case [87631]
ii. Average Case $\left[\begin{array}{llll}7 & 8 & 1 & 1\end{array}\right]$
iii. Best Case [13678]
- The number of comparisons for all cases:

$$
(n-1)+(n-2)+
$$

\qquad $+2+1=n(n-1) / 2=O\left(n^{2}\right)$

- All lists with 5 elements need 10 comparisons to sort all the data.
4.10. Example of worst case analysis for array [87611]:
- The number of comparisons to sort data in this list:

$$
(5-1)+(5-2)+(5-3)+(5-4)=4+3+2+1=10 .
$$

4.11. Example of best case analysis for array [13678]:

- The number of comparisons to sort data in this list:

$$
(5-1)+(5-2)+(5-3)+(5-4)=4+3+2+1=10 .
$$

- In the example given, it can be seen that the number of comparison for
worst case and best case is the same - with 10 comparisons.
- The difference can be seen in the number of swapping elements. Worst case has maximum number of swapping: 10, while best case has no swapping since all data is already in the right position.
- For the best case, we can observe that starting with pass one, there is no exchange of data occur.
- From the example, it can be concluded that in any pass, if there is no exchange of data occur, the list is already sorted. The next pass shouldn't be continued and the sorting process should stop.
4.12. Improvement of the Bubble Sort algorithm
i. To improve the efficiency of Bubble Sort, a condition that check whether the list is sorted should be add at the external loop
ii. A Boolean variable, sorted is added in the algorithm to signal whether there is any exchange of elements occur in certain pass.
iii. In external loop, sorted is set to true. If there is exchange of data inside the inner loop, sorted is set to false.
iv. Another pass will continue, if sorted is false and will stop if sorted is true.

```
//Program 5.2
// Improved Bubble Sort
// Sorts items in an array into ascending order.
void bubbleSort(DataType data[], int n)
{ int temp;
    bool sorted = false; // false when swaps occur
    // improvements i and ii.
    for (int pass = 1; (pass<n) && !sorted; ++pass)
    { // assume sorted - improvement iii.
        sorted = true;
        for (int x = 0; x < n-pass; ++x)
        { if (data[x] > data[x+1])
            { // exchange items
                temp = data[x];
                    data[x] = data[x+1];
                    data[x+1] = temp;
                    sorted = false;
            //signal exchange -improvement iii and iv.
            } // end if
        } // end for
    } // end for
    } // end bubbleSort
```

4.13. Example of improved Bubble sort for best case analysis for array [13678]:

$x=$	0	1	2	3	
[4]	8	8	8	8	8
[3]	1	1	1	1	1
[2]	6	6	6	6	6
[1]	3	3	3	3	3
[0]	1	1	1	1	1
sorted $=\mathbf{T}$		T	T	T	
			$s=$		

- In pass 1, there is no exchange of data occurs and variable sorted is always True. Therefore, condition statement in external loop will become false and the loop will stop execution. In this example, pass 2 will not be continued.
- For best case, the number of comparison between elements is 4, (n-1) which is $\mathrm{O}(\mathrm{n})$.
4.14. Example of improved Bubble sort for average case analysis for array [137 68]:

- For average case [1 376 8] we have to go through 2 passes only. The subsequent passes are not continued since the array is already sorted.
- Conclusion for improved Bubble Sort, the sorting time and the number of comparisons between data in average case and best case can be minimized.
4.15. Summary of bubble sort algorithm complexity (time consuming operations compares, swaps)
i. \# of Compares
- a for loop embedded inside a while loop
- Worst Case ($n-1$) $+(n-2)+(n-3) \ldots+1$, or $\mathrm{O}(\mathrm{n} 2)$
- Best Case - (n-1) or O(n)
ii. \# of Swaps
- inside a conditional -> \#swaps data dependent !!
- Best Case 0, or O(1)
- Worst Case $(\mathrm{n}-1)+(\mathrm{n}-2)+(\mathrm{n}-3) \ldots+1$, or $\mathrm{O}(\mathrm{n} 2)$
iii. Space
- size of the array
- an in-place algorithm

5.0 SELECTION SORT

5.1. Selection sort performs sorting by repeatedly find the next largest (or smallest) element in the array and put the element in the unprocessed portion of the array to the end of the unprocessed portion until the whole array is sorted.
5.2. To sort an array of record with selection sort, it works by taking multiple passes over the array with the following main activities
i. Choose the largest/smallest item in the array and place the item in its correct place.
ii. Choose the next larges/next smallest item in the array and place the item in its correct place.
iii. Repeat the process until all items are sorted.
5.3. Does not depend on the initial arrangement of the data and only appropriate for small $n-\mathrm{O}\left(n^{2}\right)$ algorithm.

$[0]$	$[1]$	$[2]$		$[3]$	$[4]$	$[5]$
12	8	3	21	99	1	Start - Unsorted List

12	8	3	21	99	1	Pass 1- Find the largest element in the array (99) and put at the last index of the array
12	8	3	21	1	99	
12	8	3	21	1	99	Pass 2- Find the second largest element in the array (21) and put at the second last index of the array
12	8	3	1	21	99	
12	8	3	1	21	99	Pass 3- Find the next largest element in the array (12) and put at the current last index of the array
1	8	3	12	21	99	
1	8	3	12	21	99	Pass 4-Find the next largest element in the array (8) and put at the current last index of the array
1	3	8	12	21	99	
1	3	8	12	21	99	Pass 5-Find the next largest element in the array (3) and put at the current last index of the array
1	3	8	12	21	99	

5.4. Two functions in selection sort implementation are; selectionSort()and and swap(). Program 5.3 and Program 5.4 are the implementation of the two functions in C++.

 into ascending order:

- In pass 1, the largest value in the array will be searched from index 1 to index 4 . The largest value is 8 and was found at index 1 and will be put at last(4). There are four comparisons in this pass.
- Below shows step by step changes in the list that show the swapping process during selection sort implementation on array $\left[\begin{array}{llll}7 & 8 & 3 & 1\end{array}\right]$.

5.6. Example of best case analysis for array [2468 10]:
- Step by step changes in the list that show the swapping process during selection sort implementation on array [2 468 10]

5.7. Selection sort analysis:
- For an array with size n , the external loop will iterate from $\mathrm{n}-1$ to 1 .
for (int last = n-1; last>=1; --last)
- For each iteration, to find the largest number in subarray, the number of comparison inside the internal loop must is equal to the value of last.
for (int p=1;p <=last; ++p)
- Therefore the total comparison for Selection Sort in each iteration is :

$$
(n-1)+(n-2)+\ldots . .2+1 .
$$

- Generally, the number of comparisons between elements in Selection Sort can be stated as follows:

$$
(n-1)+(n-2)+\ldots \ldots . .+2+1=\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

5.8. Similar to Bubble Sort, in any cases of Selection Sort (worst case, best case or average case) the number of comparisons between elements is the same.

- Example selection sort analysis for array [78 $83 \begin{array}{ll}1 & 1\end{array}$ 6:

Number of Comparisons: $4+3+2+1=10$
For array $n=5 \Rightarrow(n-1)+(n-2)+\ldots+2+1=n(n-1) / 2=O\left(n^{2}\right)$

Number of Comparisons for best case : $4+3+2+1=10$
For array $\mathrm{n}=5 \Rightarrow(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots .+2+1=\mathrm{n}(\mathrm{n}-1) / 2=\mathrm{O}\left(\mathrm{n}^{2}\right)$
5.9. Selection sort issues and improvement of the selection sort algorithm.

- It can be seen that the swapping process occur even though the largest index is at last. This is not efficient and can be improved by putting a condition statement as follows:

```
If (largestIndex !=last);
    swap(Data[largestIndex],Data[last]);
```

5.10. Summary of selection sort algorithm complexity:

- Time Complexity for Selection Sort is the same for all cases - worst case, best case or average case $O\left(n^{2}\right)$.
- The number of comparisons between elements is the same.
- The efficiency of Selection Sort does not depend on the initial arrangement of the data.

6.0 INSERTION SORT

6.1. Insertion sort performs sorting by repeatedly removes an element from the unsorted region, inserting it into the correct position in sorted region list, until all regions become sorted.
6.2. To sort an array of record with selection sort, it works by taking multiple passes over the array with the following main activities

- Partition the array into two regions: sorted and unsorted
i. Take each item from the unsorted region and insert it into its correct order in the sorted region
ii. Find next unsorted element and Insert it in correct place, relative to the ones already sorted
6.3. Insertion Sort is appropriate for small arrays due to its simplicity.
6.4. Example of Insertion sort operation with list of 6 elements [21 8312 99 1] is as follows:

[0]	$[1]$		[2]	[3]	[4]		[5]
21	8	3	12	99	1		

Start - Unsorted List

Insert 8 before 21:

Created the sorted region from index [0] to [1], the unsorted region from index [2] to [5]

8	21	3	12	99	1
3	8	21	12	99	1

Insert 3 before 8:

Created the sorted region from index [0] to [2], the unsorted region from index [3] to [5]

3	8	21	12	99	1
3	8	12	21	99	1

Insert 12 before 21:
Created the sorted region from index [0] to [3], the unsorted region from index [4] to index [5]

Keep 99 in place:
Created the sorted region from index
[0] to [4], the unsorted region from

3	8	12	21	99	1
1	3	8	12	21	99

Insert 1 before 3:

All elements are in sorted region
6.5. Insertion sort implementation:

6.6. Example of insertion sort implementation to sort array of integer [78 8316 6 into ascending order:

- In Pass 1 , item $=8>$ data[0]=7. while loop condition is false, therefore data[1] will be assigned with item $=8$. The number of comparison is 1 .
- In Pass 2, item to be insert is 3 . Insertion point is from indeks $0-2$, which is between 7 and 8 . The number of comparison is 2 .
- In Pass 3, item to be insert is 1 . Insertion point is from indeks 0-3, which is between 3, 7 and 8 . The number of comparison is 3 .
- In Pass 4, item to be insert is 6 . Insertion point is from indeks 0-4, which is between $1,3,7$ and 8 . at index, item (6) > data[1]=3, while loop condition is false and therefore data[2] is assigned with value for item $=6$. The number of comparison is 4 .
6.7. Example of a best case analysis for array [5 678 9]:

- In Pass 1 item=6 $>$ data[0]=1, while condition is false and data[1] is assigned with item $=6$. The number of comparison is 1 .
- In Pass 2 item=7 > data[1]=1, while condition is false and data[2] is assigned with item=7. The number of comparison is 1 .
- In Pass 3 item=8 > data[1]=1, while condition is false and data[3] is assigned with item $=8$. The number of comparison is 1 .
- In Pass 3 item=9 $>$ data[1]=1, while condition is false and data[4] is assigned with item=9. The number of comparison is 1 .
- There are 4 passes to sort array with elements [56789]. In each pass there is only 1 comparison.

Example:

> Pass 1,1 comparison
> Pass 2, 1 comparison
> Pass 3,1 comparison
> Pass 4,1 comparison

- In this example, the total comparisons for an array with size 5 are 4. Therefore, for best case, the number of comparison is $n-1$ which gives linear time complexity - linear $O(n)$.
6.8. The worst case for insertion sort is when we have totally unsorted data. In each pass, the number of iteration for while loop is maximum.
6.9. For example worst case with 4 elements array.

$$
\begin{aligned}
& \text { Pass } 4,4 \text { comparison }-(n-1) \\
& \text { Pass } 3,3 \text { comparison }-(n-2) \\
& \text { Pass } 2,2 \text { comparison }-(n-3) \\
& \text { Pass 1, } 1 \text { comparison }-(n-4)
\end{aligned}
$$

- The number of comparisons between elements in Insertion Sort can be stated as follows:

$$
\sum_{i=1}^{n-1} i=(n-1)+(n-2)+\ldots \ldots+2+1=\frac{n(n-1)}{2}=O\left(n^{2}\right)
$$

- Example of worst case analysis for array [97531]:

Pass 4 - Have to compare data at data[4-1], data[4-2], data[4-3] and data[4-4].
Pass 3 - Have to compare data at data[3-1], data[3-2] and data[3-3].
Pass 2 - Have to compare data at data[2-1], and data[2-2].
Pass 1 - Have to compare data at data[1-1] only

- The number of comparison is 10. i.e. $(5-1)+(5-2)+(5-3)+(5-4)=10$.
6.10. Summary of insertion sort algorithm complexity:
- How many compares are done?
- $1+2+\ldots+(n-1), O\left(n^{2}\right)$ for worst case
- ($\mathrm{n}-1)^{*} 1, O(\mathrm{n})$ for best case
- How many element shifts are done?
- $1+2+\ldots+(n-1), O\left(n^{2}\right)$ for worst case
- 0,O(1) for best case
- How much space?
- In-place algorithm

7.0 SUMMARY OF QUADRATIC SORTING ALGORITHMS COMPLEXITY

Efficiency	Insertion	Bubble	Selection
Comparisons:			
Best Case	$O(n)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Average Case	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Worst Case	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Swaps			
Best Case	0	O	$O(n)$
Average Case	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(n)$
Worst Case	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	O

8.0 MERGE SORT

8.1. Merge Sort applies divide and conquer strategy. First, the list to be sorted is separated into two groups (Divide), recursively each group is sorted independently (Conquer) and then the two sorted groups are merged to a sorted sequence (Combine).
8.2. Three main steps in Merge Sort algorithm:
i. Divide an array into halves
ii. Sort each half
iii. Merge the sorted halves into one sorted array
8.3. The performance is independent of the initial order of the array items.
8.4. Illustration of the recursive Merge Sort algorithm strategy.

8.5. Two functions in merge sort implementation are;

MergeSort() and Merge().

i. mergeSort()function

- A recursive function that divide the array into pieces until each piece contain only one item.
- The small pieces are merge into larger sorted pieces until one sorted array is achieved.
ii. merge()function
- Compares an item into one half of the array with item in the other half of the array and,
- Moves the smaller item into temporary array.
- Then, the remaining items are simply moved to the temporary array.
- The temporary array is copied back into the original array.
8.6. Program 5.6 is the implementation of the mergeSort() function in $\mathrm{C}++$.

```
//Program 5.6
void mergeSort(DataType theArray[],int first,int last)
\{ if (first < last)
    \{ // sort each half
        int mid = (first + last)/2;
        // index of midpoint
        // sort left half theArray[first..mid]
            mergesort(theArray, first, mid);
            //sort right half theArray[mid+1..last]
            mergesort(theArray, mid+1, last);
            // merge the two halves
            merge(theArray, first, mid, last);
\} // end if
\} // end mergesort
                                    small pieces are
                                    merged
```

8.7. Example of calling mergeSort(theArray, $\mathbf{0}, \mathbf{5}$)function in merge sort implementation to sort array of integer [38 16273912 27] into ascending order. In function mergeSort(theArray, 0,5) three function will be called are mergeSort(theArray, 0,2), mergeSort(theArray, 3,5) and merge(theArray, $0,2,5$).

8.8. Program 5.7 is the implementation of the merge() function in $\mathrm{C}++$.

//Program 5.7

const int MAX_SIZE = maxNmbrltemInArry;
void merge(DataType theArray[],
int first, int mid, int last)
\{ DataType tempArray[MAX_SIZE]; // temp array
int first1 = first; // first subarray begin
int last1 = mid; // end of first subarray
int first2 = mid + 1; // seend subarry begin
int last2 = last; // end of secnd subarry
// while both subarrays are not empty,
// copy the smaller item into the temporary array int index = first1;
// next available location in tempArray
for (; (first1 <= last1) \& \& (first2 <= last2); ++index)
[if (theArray[first1] < theArray[first2])
\{ tempArray[index] = theArray[first1];
++first1; \}
else
\{ tempArray[index] = theArray[first2];
++first2; \}
\} // end if
for (; first1 <= last1; ++first1, ++index)
tempArray[index] = theArray[first1];
// finish off the second subarray, if necessary
for (; first2 <= last2; ++first2, ++index) tempArray[index] = theArray[first2];
// copy the result back into the original array
for (index = first;index <= last; ++index)
theArray[index] = tempArray[index];
\} // end merge function
tempArray[index] = theArray[first2];

8.9. Example of calling merge(theArray, $\mathbf{0}, \mathbf{2}, \mathbf{4}$)function in merge sort implementation to sort array of integer [8, 1, 4, 3. 2] into ascending order.

integer [38 16273912 27] into ascending order. The numbered function is the calling sequence of the functions in the algorithms.

- The execution of the C++ program to sort array of integers :
[38 16273912 27]
into ascending order gives the following sequence of output tracing.

```
Unsorted data [[38 16 27 39 12 27]
    14. mergeSort(theArray,5,5);
Content of divided sublist with first=0 & last=5 [38 16 27 39 12 27]
Content of divided sublist with first=0 & last=2 [38 16 27]
Content of divided sublist with first=0 & last=1 [38 16]
Content of divided sublist with first=0 & last=0 [38]
Content of divided sublist with first=1 & last=1 [16]
Content of merged list with first=0 & last=1 [16 38]
Content of divided sublist with first=2 & last=2 [27]
Content of merged list with first=0 & last=2 [16 27 38]
Content of divided sublist with first=3 & last=5 [39 12 27]
Content of divided sublist with first=3 & last=4 [39 12]
Content of divided sublist with first=3 & last=3 [39]
Content of divided sublist with first=4 & last=4 [12]
Content of merged list with first=3 & last=4 [12 39]
Content of divided sublist with first=5 & last=5 [27]
Content of merged list with first=3 & last=5 [12 27 39]
Content of merged list with first=0 & last=5 [l12 16 27 27 38 39]
Sorted data [llllllll
Press any key to continue
```

8.11. Merge sort analysis:

- The list is always divided into two balanced list (or almost balanced for odd size of list)
- The number of calls to repeatedly divide the list until there is one item left in the list is:

$$
n+2 \frac{n}{2}+4 \frac{n}{4}+8 \frac{n}{8}+16 \frac{n}{16}+\ldots \ldots . x \frac{n}{x}
$$

- Assuming that the left segment and the right segment of the list have the equal size (or almost equal size), then $x \approx \lg n$. The number of iteration is approximately $n \lg n$.
- The same number of repetition is needed to sort and merge the list (refer to the following illustration). Thus, as a whole the number of steps needed to sort data using merge sort is $2 n \lg n$, which is $O(n \lg n)$.

8.12. Summary of merge sort analysis:
- Worse Case Analysis: $O\left(n^{*} \log 2 n\right)$
- Average case Analysis: O(n * $\log 2 n$)
- Performance is independent of the initial order of the array items
- Advantage - Merge sort is an extremely fast algorithm
- Disadvantage - Merges sort requires a second array (temporary array) as large as the original array

9.0 QUICK SORT

9.1. Quick sort is similar with Merge sort in using divide and conquer technique.
9.2. Differences of Quick sort and Merge sort :

Quick Sort	Merge Sort
Partition the list based on the pivot value	Partition the list by dividing the list into two
No merge operation is needed since when there is only one item left in the list to be sorted, all other items are already in sorted position.	Merge operation is needed to sort and merge the item in the left and right segment.

9.3. The divide-and-conquer algorithm strategy:
i. Choose a pivot (first element in the array)
ii. Partition the array about the pivot

- items < pivot
- items >= pivot
- Pivot is now in correct sorted position
iii. Sort the left section again until there is one item left
iv. Sort the right section again until there is one item left
9.4. Illustration of the recursive Quick Sort algorithm strategy.

9.5. Two functions in quick sort implementation are; quickSort() and partition().
i. quickSort()function
- A recursive function that will partition the list into several sub lists until there is one item left in the sub list
ii. partition()function
- The function organizes the data so that the items with values less than pivot will be on the left of the pivot, while the values at the right pivot contains items that are greater or equal to pivot.
9.6. Program 5.8 is the implementation of the quickSort() function in $\mathrm{C}++$.
- Recursive function that will partition the list into several sub lists until there is one item left in the sub list.
- Example of calling quickSort($\mathbf{T}, \mathbf{0}, \mathbf{8}$) function in quick sort implementation to sort array of integer [5 1572418103] into ascending order. In function quickSort($\mathbf{T}, \mathbf{0}, \mathbf{8}$) three function will be called are partition($\mathbf{T}, \mathbf{0}, \mathbf{8}$), quickSort(T,0,4) and merge(T,5,8). Refer to the following figure shows the calling function.

9.7. Program 5.9 is the implementation of the partition() function in $\mathrm{C}++$.
- Organize the data so that the items with values less than pivot will be on the left of the pivot, while the values at the right pivot contains items that are greater or equal to pivot.

1	//Program 5.9	
2	int partition(int T[], int first,int last)	
3	\{	
4	int pivot, temp;	
5	int loop, cutPoint, bottom, top;	
6	pivot=T[first];	
7	bottom=first; top= last;	
8	loop=1; //always TRUE	
9		
10	while (loop) \{	
11	while (T[top]>pivot)	
12	// find smaller value than	
13	// pivot from top array	
14	top--;	From top Find value < pivot \& skip value > pivot

15	\}	
16		
17	while(T[bottom]<pivot)\{	From bottom
18	//find larger value than	Find value > pivot
19	//pivot from bottom	\& skip value < pivot
20	bottom++;	
21	\}	
22		
23	if (bottom<top) \{	
24	// change pivot place	
25	temp=T[bottom];	
26	T[bottom]=T[top];	
27	T[top]=temp;	
28	\}	
29	else \{	
30	loop=0; //loop false	Stop loop
31	cutPoint = top;	Stop loop
32	\}//end if	
33	\}// end while	
34	return cutPoint;	
35	\}//end function	
36		

- The following figure shows example of calling partition $(\mathbf{T}, \mathbf{0}, \mathbf{8})$ function in quick sort implementation to sort array of integer [51572418103] into ascending order. After execution of function partition(), pivot 5 will be placed at index 4 and the value 4 , will be returned to function quickSort() for further partition.

9.8. Referring to the quick sort implementation figure at point 9.6, the number at the sequence of calling functions for quickSort()and partition() functions can be mapped with the following output display.

```
Content of the array before sorting : 5 15 7 2 4 1 8
The sublist -> 1 with pivot = 5
3 15724 1 8 10 3
The sublist -> 2 with pivot = 3
3 1 4 1 2 5
The sublist -> 3 with pivot = 2
2 1 3
The sublist -> 4 with pivot = 1
12
The sublist -> 5 with one piece item = 1
The sublist -> 6 with one piece item = 2
The sublist -> }7\mathrm{ with one piece item = 3
The sublist -> 8 with pivot = 4
4 5
The sublist -> 9 with one piece item = 4
The sublist -> 10 with one piece item = 5
The sublist -> }11\mathrm{ with pivot = 7
7 8 10 15
The sublist -> 12 with one piece item = 7
The sublist -> }13\mathrm{ with pivot = 8
8 10 15
The sublist -> 14 with one piece item = 8
The sublist -> }15\mathrm{ with pivot = 10
10 15
The sublist -> }16\mathrm{ with one piece item = 10
8 10 15
The sublist -> }17\mathrm{ with one piece item = 15
8 10 15
```

9.9. Quick sort analysis.

- The efficiency of quick sort depends on the pivot value.
- This class chose the first element in the array as pivot value.
- However, pivot can also be chosen at random, or from the last element in the array.
- The worst case for quick sort occurs when the smallest item or the largest item always be chosen as pivot value causing the left partition and the right partition not balance.
 partition.
9.11. The best happens partition into
- Must pivot other
 balance
case for quick sort when the list is balance segment.
choose the right that can put items in
situation.
- The number of comparisons in partition process for base case situation is as follows:

$$
n+2 \frac{n}{2}+4 \frac{n}{4}+8 \frac{n}{8}+16 \frac{n}{16}+\ldots \ldots . . x \frac{n}{x}
$$

- The best case for quick sort happen when the left segment and the right segment is balanced (have the same size) with value $x \approx \lg n$.
- Example of best case quick sort: array[1 25 4].

9.12. The number of steps to get the balance segment while partitioning the array is Ig n and the number of comparisons depend on the size list, n.

9.13. Summary of quick sort analysis:
- Average case: O(n * $\log _{2} n$)
- Worst case: $O\left(n^{2}\right)$ - When the array is already sorted and the smallest item is chosen as the pivot
- Quicksort is usually extremely fast in practice
- Even if the worst case occurs, quicksort's performance is acceptable for moderately large arrays

10.0 SUMMARY

10.1. Order-of-magnitude analysis and Big O notation measure an algorithm's time requirement as a function of the problem size by using a growth-rate function.
10.2. To compare the efficiency of algorithms
i. Examine growth-rate functions when problems are large
ii. Consider only significant differences in growth-rate functions
10.3. Worst-case and average-case analyses

- Worst-case analysis considers the maximum amount of work an algorithm will require on a problem of a given size
- Average-case analysis considers the expected amount of work that an algorithm will require on a problem of a given size
10.4. Order-of-magnitude analysis can be the basis of your choice of an ADT implementation.
10.5. Selection sort, Bubble sort, and Insertion sort are all $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithms. Quick sort and merge sort are two very fast recursive sorting algorithms.
10.6. Approximate growth rates of time required for eight sorting algorithms.

	Worst case		Average case
			n^{2}
Selection sort	n^{2}		n^{2}
Bubble sort	n^{2}		n^{2}
Insertion sort	n^{2}	$n * \log n$	
Mergesort	$n^{*} \log n$		n
Quicksort	n^{2}	$n * \log n$	

10.7. A comparison of growth-rate functions shows that $O(n \log n)$ algorithm is significantly faster than $O\left(n^{2}\right)$ algorithm.

| | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | |
| Function | 10 | 100 | 1,000 | 10,000 | 100,000 | $1,000,000$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\log _{2} n$ | 3 | 6 | 9 | 13 | 16 | 19 |
| n | 10 | 10^{2} | 10^{3} | 10^{4} | 10^{5} | 10^{6} |
| $n * \log _{2} n$ | 30 | 664 | 9,965 | 10^{5} | 10^{6} | 10^{7} |
| n^{2} | 10^{2} | 10^{4} | 10^{6} | 10^{8} | 10^{10} | 10^{12} |
| n^{3} | 10^{3} | 10^{6} | 10^{9} | 10^{12} | 10^{15} | 10^{18} |
| 2^{n} | 10^{3} | 10^{30} | 10^{301} | $10^{3,010}$ | $10^{30,103}$ | $10^{301,030}$ |

