
	

	

MODULE 5

SORTING
DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
UNIVERSITI TEKNOLOGI MALAYSIA

	

	

	

MODULE 5: SORTING

OBJECTIVES FOR STUDENTS

1. To describe the purpose of sorting technique as operations on data structure.

2. To write source codes for the implementation of simple sort algorithms : Bubble

Sort, Insertion Sort and Selection Sort

3. To write source codes for the implementation of divide and conquer sorting

algorithms : Merge Sort and Quick Sort.

4. To identify the efficiency of the sorting algorithms and determine the suitable

sorting techniques for certain problem.

KEY CONCEPT

1.0 INTRODUCTION TO SORTING

1.1. Sorting definition - A process in which data in a list are organized in certain

order; either ascending or descending order.

1.2. Advantages of sorted lists:

i. Easier to understand and analyze data collection.
ii. Searching process will be much faster.
• Sorting Example :

i. Sorted in Ascending order: phone directory and dictionary
ii. Sorted in Descending order; number of scores/points earned by

every team in a competition. The winner gets the highest score.

1.3. Sorting Algorithms Categories:

i. An internal sort
o Requires that the collection of data fit entirely in the computer’s

main memory. Suitable to sort a small size of list.
ii. An external sort

o The collection of data will not fit in the computer’s main memory all
at once, but must reside in secondary storage. Suitable to sort large

	

	

size of data.

1.4. Types of lists to be sorted:
• List of simple data types, such as integers, char or strings
• Examples: list of numbers (int type) or list of book titles (string type) as

shown in the figure below:

 List of student’s
age (int)

 List of Book Titles
(string)

 22 Struktur Data

 28 Learning English

 18 Mathematics for
Kids

 23 Effective
Communication

 19 Learn C++

1.5. Sorting list of records

• Each record contains a field called the key.
• Record key – field that become the identifier to the record.
• For sorting purposes, the records will be sorted based on the sorting key,

which is part of the data item that we consider when sorting a data
collection.

• Example: A list that contains student’s information

 Indeks Student Name Matrix Number CPA

 [0] Hisham A5021 3.09

 [1] Zainal A1051 2.55

 [2] Maria A2000 3.60

 [3] Adam A5501 3.00

 [4] Zahid A2233 2.95

2.0 SORTING PROCESS

2.1. Two main activities in the sorting process:

i. Compare: compare between two elements. If they are not in correct

List of
records

Sorting key
The list can be sorted either by student’s name, matrix number or

CPA.

	

	

order, then
ii. Swap: Change the position of the elements in order to get the right

order.

2.2. The efficiency of sorting algorithm is measured based on :

• the number of comparisons and
• the number of swapping between elements

2.3. The sorting efficiency is measured based on the execution time of the

algorithm when tested using sample cases of data as follows:
• Worst-case analysis considers the maximum amount of work an

algorithm will require on a problem of a given size. (Data is totally
unsorted).

• Best-case analysis considers the minimum amount of work an
algorithm will require on a problem of a given size. (Data is almost
sorted).

• Average-case analysis considers the expected amount of work that
an algorithm will require on a problem of a given size.

3.0 SORTING ALGORITHMS

3.1. There are several sorting algorithms. In this module, two strategies of

sorting techniques will be discussed in detail. They are:
i. Quadratic Sorting Algorithms
ii. Divide and Conquer Sorting Algorithms

3.2. Quadratic Sorting Algorithms work straight-forward and sorting methods is

usually people think of sorting things in general. The quadratic sorting
algorithms are not very fast and with quadratic efficiency.

3.3. Three quadratic sorting algorithms are:

i. Bubble Sort
ii. Insertion Sort
iii. Selection Sort

3.4. Divide and Conquer Sorting Algorithms strategy solves a problem by :

i. Breaking into sub problems that are themselves smaller instances of the
same type of problem.

ii. Recursively solving these sub problems.
iii. Appropriately combining their answers.

3.5. Two types of sorting algorithms which are based on this divide and

conquer algorithm :
i. Merge Sort
ii. Quick Sort

	

	

4.0 BUBBLE SORT

4.1. Bubble sort is a simple sorting technique in which will arrange the elements

of the list by comparing each pair of adjacent items and swapping them if
they are in the wrong order.

4.2. To sort an array of record with bubble sort, it works by taking multiple

passes over the array with the following main activities
i. Compare adjacent elements in the list
ii. Exchange the elements if they are out of order
iii. Each pass moves the largest (or smallest) elements to the end of the

array
iv. Repeating this process eventually sorts the array into ascending (or

descending) order.

4.3. Bubble sort is a quadratic algorithm O(n2). The algorithm only suitable to

sort array with small size of data.

4.4. Example of Bubble Sort operation with list of 8 elements.

[0] [1] [2] [3] [4] [5] Pass 1: Unsorted List

1. Compare, swap (0, 1)

2. Compare, swap (1, 2)

3. Compare, no swap

4. Compare, no swap

5. Compare, swap (4, 5)

6. 99 is in right position

	

	

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]
Pass 3
1. Compare, no swap

2. Compare, no swap

3. Compare, swap (2, 3)
4. 12 is in right position

Pass 4
1. Compare, no swap

2. Compare, swap (1, 2)
3. 8 is in right position

Pass 5
4. Compare, swap (0, 1)

5. 1 & 3 are in right position -

DONE

Pass 2
1. Compare, swap (0, 1)

2. Compare, no swap

3. Compare, no swap

4. Compare, swap (3, 4)

5. 22 is in right position

	

	

4.5. Bubble Sort implementation:

4.6. Example of Bubble Sort implementation to sort array of integer [7 8 3 1 6]
into ascending order:

pass = 1 listSize = 5 pass = 2 listSize = 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

//Program 5.1
// Sorts items in an array into ascending order.
void BubbleSort(dataType data[], int listSize)
{
 int pass, tempValue;
 for (pass =1;pass < listSize; pass++)
 {
 // moves the largest element to the
 // end of the array
 for (int x = 0; x < listSize - pass; x++)
 //compare adjacent elements
 if (data[x]>data[x+1])
 { // swap elements
 tempValue = data[x];
 data[x] = data[x+1];
 data[x+1] = tempValue;
 }
 }
} // end Bubble Sort

External for loop is used to control
the number of passes needed.	

Internal for loop is used to compare adjacent
elements and swap elements if they are not in order.
After the internal loop has finished execution, the
largest element in the array will be moved at the top.
	

If statement is used to compare
the adjacent elements.
	

	

	

pass = 3 listSize = 5 pass = 3 listSize = 5
4.7. Bubble sort analysis:

• To determine the efficiency of Bubble Sort algorithm the following number
need to be identified:

o the number of comparison between elements and
o the number of exchange between elements.

• Generally, the number of comparisons between elements in Bubble Sort

can be stated as follows:

• However, in any cases, (worst case, best case or average case) the

number of comparisons between elements are the same.

4.8. An example of Bubble sort analysis for array [7 8 3 1 6]:

Pass 1 :
Comparison (listSize-pass):
(5-1) = 4

Pass 2 :
Comparisons (listSize-pass):
(5-2) = 3

Pass 3 :
Comparison(listSize-pass):
(5-3) = 2

Pass 4 :
Comparisons (listSize-pass):
(5-4) = 1

• The number of comparisons:

(n-1)+(n-2)+……….….+2+1= n(n-1)/2 = O(n2)
• The number of comparisons for array [7 8 3 1 6]:

(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

4.9. In any cases, (worst case, best case or average case) to sort the list in
ascending order the number of comparisons between elements are the
same.
i. Worst Case [8 7 6 3 1]
ii. Average Case [7 8 3 1 6]
iii. Best Case [1 3 6 7 8]

(n-‐1)+(n-‐2)+…….+2+1=	 	 n(n-‐1)/2	 =	 O(n2)	

	

	

• The number of comparisons for all cases:
 (n-1)+(n-2)+……….….+2+1= n(n-1)/2 = O(n2)
• All lists with 5 elements need 10 comparisons to sort all the data.

4.10. Example of worst case analysis for array [8 7 6 3 1]:
o The number of comparisons to sort data in this list:

(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

Pass 1 : (5-1=4 Comparisons) Pass 2 : (5-2=3 Comparisons)

Pass 3 : (5-3= 2 Comparisons) Pass 4 : (5-4=1 Comparison)

4.11. Example of best case analysis for array [1 3 6 7 8]:

o The number of comparisons to sort data in this list:
(5-1) + (5-2) + (5-3) + (5-4) = 4 + 3 + 2 + 1 = 10.

Pass 1 : (5-1=4 Comparisons) Pass 2 : (5-2=3 Comparisons)

Pass 3 : (5-3=2 Comparisons) Pass 4 : (5-4=1 Comparison)

o In the example given, it can be seen that the number of comparison for

	

	

worst case and best case is the same - with 10 comparisons.
o The difference can be seen in the number of swapping elements. Worst

case has maximum number of swapping: 10, while best case has no
swapping since all data is already in the right position.

o For the best case, we can observe that starting with pass one, there is no
exchange of data occur.

o From the example, it can be concluded that in any pass, if there is no
exchange of data occur, the list is already sorted. The next pass shouldn't
be continued and the sorting process should stop.

4.12. Improvement of the Bubble Sort algorithm

i. To improve the efficiency of Bubble Sort, a condition that check whether
the list is sorted should be add at the external loop

ii. A Boolean variable, sorted is added in the algorithm to signal whether
there is any exchange of elements occur in certain pass.

iii. In external loop, sorted is set to true. If there is exchange of data inside the
inner loop, sorted is set to false.

iv. Another pass will continue, if sorted is false and will stop if sorted is true.

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0

//Program 5.2
// Improved Bubble Sort
// Sorts items in an array into ascending order.

void bubbleSort(DataType data[], int n)
{ int temp;
 bool sorted = false; // false when swaps occur
 // improvements i and ii.
 for (int pass = 1; (pass<n) && !sorted; ++pass)
 { // assume sorted - improvement iii.
 sorted = true;
 for (int x = 0; x < n-pass; ++x)
 { if (data[x] > data[x+1])
 { // exchange items
 temp = data[x];
 data[x] = data[x+1];
 data[x+1] = temp;
 sorted = false;
 //signal exchange -improvement iii and iv.
 } // end if
 } // end for
 } // end for
} // end bubbleSort

	

	

2
1
2
2
2
3

4.13. Example of improved Bubble sort for best case analysis for array [1 3 6 7 8]:

o In pass 1, there is no exchange of data occurs and variable sorted is
always True. Therefore, condition statement in external loop will become
false and the loop will stop execution. In this example, pass 2 will not be
continued.

o For best case, the number of comparison between elements is 4, (n-1)
which is O(n).

4.14. Example of improved Bubble sort for average case analysis for array [1 3 7
6 8]:

	

	

o For average case [1 3 7 6 8] we have to go through 2 passes only. The

subsequent passes are not continued since the array is already sorted.
o Conclusion for improved Bubble Sort, the sorting time and the number of

comparisons between data in average case and best case can be
minimized.

4.15. Summary of bubble sort algorithm complexity (time consuming operations

compares, swaps)

i. # of Compares
o a for loop embedded inside a while loop
o Worst Case (n-1)+(n-2)+(n-3) …+1 , or O(n2)
o Best Case – (n-1) or O(n)

ii. # of Swaps
o inside a conditional -> #swaps data dependent !!
o Best Case 0, or O(1)
o Worst Case (n-1)+(n-2)+(n-3) …+1 , or O(n2)

iii. Space
o size of the array
o an in-place algorithm

5.0 SELECTION SORT

5.1. Selection sort performs sorting by repeatedly find the next largest (or

smallest) element in the array and put the element in the unprocessed
portion of the array to the end of the unprocessed portion until the whole
array is sorted.

5.2. To sort an array of record with selection sort, it works by taking multiple

passes over the array with the following main activities
i. Choose the largest/smallest item in the array and place the item in its

correct place.
ii. Choose the next larges/next smallest item in the array and place the

item in its correct place.
iii. Repeat the process until all items are sorted.

5.3. Does not depend on the initial arrangement of the data and only

appropriate for small n - O(n2) algorithm.

	

	

5.4. Two functions in selection sort implementation are; selectionSort()and and

swap(). Program 5.3 and Program 5.4 are the implementation of the two
functions in C++.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

//Program 5.3
void selectionSort(DataType Data[], int n)
{
 for (int last = n-1; last >= 1; --last)
 {// select largest item in theArray
 int largestIndex = 0;
 // largest item is assumed start at index 0
 for (int p=1;p <= last; ++p)
 { if (Data[p] > Data[largestIndex])
 largestIndex = p;
} // end for
 // swap largest item Data[largestIndex] with
 // Data[last]
 swap(Data[largestIndex],Data[last]);
 } // end for
} // end selectionSort

	

Pass 2- Find the second largest
element in the array (21) and put at
the second last index of the array

Pass 3- Find the next largest
element in the array (12) and put at
the current last index of the array

Pass 4-Find the next largest
element in the array (8) and put at
the current last index of the array

Pass 5-Find the next largest
element in the array (3) and put at
the current last index of the array

Start - Unsorted List

Pass 1- Find the largest element in
the array (99) and put at the last
index of the array

[0] [1] [2] [3] [4] [5]

last : index of the last
item in the subarray of
items yet to be sorted.

largestIndex :
index of the largest
item found

swap: change largest value with item
at last index of the subarray.

	

	

1
2
3
4
5
6

//Program 5.4
void swap(DataType& x, DataType& y)
{ DataType temp = x;
 x = y;
 y = temp;
} // end swap

5.5. Example of selection sort implementation to sort array of integer [7 8 3 1 6]

into ascending order:

Pass 1
last = 4
largestIndex = 0, 1, 1, 1
p = 1, 2, 3, 4

Pass 2
last = 3
largestIndex = 0, 0, 0
p = 1, 2, 3, 4

Pass 3
last = 2
largestIndex = 0, 1
p = 1, 2

Pass 4
last = 1
largestIndex = 0, 1
p = 1

o In pass 1, the largest value in the array will be searched from index 1 to

index 4. The largest value is 8 and was found at index 1 and will be put
at last(4). There are four comparisons in this pass.

o Below shows step by step changes in the list that show the swapping
process during selection sort implementation on array [7 8 3 1 6].

Need to pass x and y by
reference

	

	

5.6. Example
of best
case
analysis
for array
[2 4 6 8
10]:

• Step by step changes in the list that show the swapping process during
selection sort implementation on array [2 4 6 8 10]

5.7. Selection sort analysis:

• For an array with size n, the external loop will iterate from n-1 to 1.
for (int last = n-1; last>=1; --last)

• For each iteration, to find the largest number in subarray, the number of
comparison inside the internal loop must is equal to the value of last.

for (int p=1;p <=last; ++p)
• Therefore the total comparison for Selection Sort in each iteration is :

 (n-1) + (n-2) + ….. 2 + 1.
• Generally, the number of comparisons between elements in Selection

Sort can be stated as follows:

5.8. Similar to Bubble Sort, in any cases of Selection Sort (worst case, best case

or average case) the number of comparisons between elements is the
same.

last = 4 3 2 1

largestIndex = 4 3 2 1

last = 4 3 2 1

largestIndex = 1 0 1 1

	

	

• Example selection sort analysis for array [7 8 3 1 6]:

• Example selection sort analysis for best case array [10 8 6 4 2]:

5.9. Selection sort issues and improvement of the selection sort algorithm.
• It can be seen that the swapping process occur even though the

largest index is at last. This is not efficient and can be improved by
putting a condition statement as follows:

5.10. Summary of selection sort algorithm complexity:
• Time Complexity for Selection Sort is the same for all cases - worst case,

best case or average case O(n2).
• The number of comparisons between elements is the same.
• The efficiency of Selection Sort does not depend on the initial

arrangement of the data.

Number of Comparisons: 4 + 3 + 2 + 1 = 10
For array n= 5 => (n-1) + (n-2) + ….+ 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

 largestIndex = 1 0 1 1

Number of Comparisons for best case : 4 + 3 + 2 + 1 = 10
For array n= 5 => (n-1) + (n-2)+ …. + 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

largestIndex = 4 3 2 1

If (largestIndex !=last);
 swap(Data[largestIndex],Data[last]);

	

	

6.0 INSERTION SORT

6.1. Insertion sort performs sorting by repeatedly removes an element from the

unsorted region, inserting it into the correct position in sorted region list, until all
regions become sorted.

6.2. To sort an array of record with selection sort, it works by taking multiple passes

over the array with the following main activities
• Partition the array into two regions: sorted and unsorted

i. Take each item from the unsorted region and insert it into its correct
order in the sorted region

ii. Find next unsorted element and Insert it in correct place, relative to the ones
already sorted

6.3. Insertion Sort is appropriate for small arrays due to its simplicity.

6.4. Example of Insertion sort operation with list of 6 elements [21 8 3 12 99 1] is as

follows:

Insert 3 before 8:
Created the sorted region from index
[0] to [2], the unsorted region from
index [3] to [5]

Insert 12 before 21:
Created the sorted region from index
[0] to [3], the unsorted region from
index [4] to index [5]

Insert 8 before 21:
Created the sorted region from index
[0] to [1], the unsorted region from
index [2] to [5]	

Insert 1 before 3:
All elements are in sorted region

Start - Unsorted List
[0] [1] [2] [3] [4] [5]

Keep 99 in place:
Created the sorted region from index
[0] to [4], the unsorted region from
index [5]

	

	

6.5. Insertion sort implementation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

//Program 5.5
void insertionSort(dataType data[])
 { dataType item;
 int pass, insertIndex;
 for(pass=1; pass<n; pass++)
 {
 item = data[pass];
 insertIndex = pass;
 while((insertIndex >0) &&
 (data[insertIndex -1]>item))
 {
 //insert the right item
 data[insertIndex]= data[insertIndex -1];
 insertIndex --;
 }
 data[insertIndex] = item;
 //insert item at the right place
 }
}

6.6. Example of insertion sort implementation to sort array of integer [7 8 3 1 6] into

ascending order:

Pass 1
insertIndex :
 1
item = 8

Pass 2
insertIndex :
 2 1 0
item = 3

External loop to
control sorted
and unsorted
regions

item : item in the
unsorted region yet
to be sorted in the
sorted region

Internal loop
to search
for insertion
spot & shift
the sorted
item to
provide
space to
insert item

Insert item in
the sorted
region

	

	

Pass 3
insertIndex :
 3 2 1 0
item = 1

Pass 3
insertIndex :
 4 3 2 2
item = 6

• In Pass 1, item=8 > data[0]=7. while loop condition is false, therefore data[1] will be

assigned with item = 8. The number of comparison is 1.
• In Pass 2, item to be insert is 3. Insertion point is from indeks 0-2, which is between 7

and 8. The number of comparison is 2.
• In Pass 3, item to be insert is 1. Insertion point is from indeks 0-3, which is between 3,

7 and 8. The number of comparison is 3.
• In Pass 4, item to be insert is 6. Insertion point is from indeks 0-4, which is between

1,3, 7 and 8. at index, item (6) > data[1]=3, while loop condition is false and
therefore data[2] is assigned with value for item = 6. The number of comparison is 4.

6.7. Example of a best case analysis for array [5 6 7 8 9]:

Pass 1
insertIndex = 1
item = 6

Pass 2
insertIndex = 2
item = 7

Pass 3
insertIndex = 3
item = 8

Pass 4
insertIndex = 4
item = 9

	

	

• In Pass 1 item=6 > data[0]=1, while condition is false and data[1] is assigned

with item=6. The number of comparison is 1.
• In Pass 2 item=7 > data[1]=1, while condition is false and data[2] is assigned

with item=7. The number of comparison is 1.
• In Pass 3 item=8 > data[1]=1, while condition is false and data[3] is assigned

with item=8. The number of comparison is 1.
• In Pass 3 item=9 > data[1]=1, while condition is false and data[4] is assigned

with item=9. The number of comparison is 1.
• There are 4 passes to sort array with elements [5 6 7 8 9]. In each pass there is

only 1 comparison.

Example:

 Pass 1, 1 comparison
 Pass 2, 1 comparison
 Pass 3, 1 comparison
 Pass 4, 1 comparison

• In this example, the total comparisons for an array with size 5 are 4. Therefore,

for best case, the number of comparison is n-1 which gives linear time
complexity - linear O(n).

6.8. The worst case for insertion sort is when we have totally unsorted data. In each

pass, the number of iteration for while loop is maximum.
6.9. For example worst case with 4 elements array.

Pass 4, 4 comparison - (n-1)
 Pass 3, 3 comparison -(n-2)
 Pass 2, 2 comparison -(n-3)
 Pass 1, 1 comparison - (n-4)

• The number of comparisons between elements in Insertion Sort can be stated
as follows:

• Example of worst case analysis for array [9 7 5 3 1]:
Pass 4 - Have to compare data at data[4-1], data[4-2], data[4-3]
 and data[4-4].

 Pass 3 - Have to compare data at data[3-1], data[3-2] and data[3-3].
 Pass 2 - Have to compare data at data[2-1], and data[2-2].
 Pass 1 - Have to compare data at data[1-1] only

o The number of comparison is 10. i.e. (5-1)+ (5-2) + (5-3) + (5-4) = 10.

	

	

6.10. Summary of insertion sort algorithm complexity:
• How many compares are done?

– 1+2+…+(n-1), O(n2) for worst case
– (n-1)* 1 , O(n) for best case

• How many element shifts are done?
– 1+2+...+(n-1), O(n2) for worst case
– 0 , O(1) for best case

• How much space?
– In-place algorithm

7.0 SUMMARY OF QUADRATIC SORTING ALGORITHMS COMPLEXITY

Efficiency Insertion Bubble Selection

Comparisons:

Best Case O (n) O(n2) O(n2)

Average
Case

O(n2) O(n2) O(n2)

Worst Case O(n2) O(n2) O(n2)

Swaps

Best Case 0 0 O(n)

Average
Case

O(n2) O(n2) O(n)

Worst Case O(n2) O(n2) O(n)

8.0 MERGE SORT

8.1. Merge Sort applies divide and conquer strategy. First, the list to be sorted is

separated into two groups (Divide), recursively each group is sorted
independently (Conquer) and then the two sorted groups are merged to a
sorted sequence (Combine).

8.2. Three main steps in Merge Sort algorithm:

i. Divide an array into halves
ii. Sort each half
iii. Merge the sorted halves into one sorted array

8.3. The performance is independent of the initial order of the array items.

	

	

8.4. Illustration of the recursive Merge Sort algorithm strategy.

8.5. Two functions in merge sort implementation are;

 MergeSort() and Merge().
i. mergeSort()function

o A recursive function that divide the array into pieces until each piece
contain only one item.

o The small pieces are merge into larger sorted pieces until one sorted
array is achieved.

ii. merge()function
o Compares an item into one half of the array with item in the other half

of the array and,
o Moves the smaller item into temporary array.
o Then, the remaining items are simply moved to the temporary array.
o The temporary array is copied back into the original array.

	

	

8.6. Program 5.6 is the implementation of the mergeSort() function in C++.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

//Program 5.6
void mergeSort(DataType theArray[],int first,int last)
{ if (first < last)
 { // sort each half
 int mid = (first + last)/2;
 // index of midpoint
 // sort left half theArray[first..mid]
 mergesort(theArray, first, mid);
 //sort right half theArray[mid+1..last]

mergesort(theArray, mid+1, last);
 // merge the two halves
 merge(theArray, first, mid, last);
} // end if
} // end mergesort

8.7. Example of calling mergeSort(theArray,0,5)function in merge sort implementation

to sort array of integer [38 16 27 39 12 27] into ascending order. In function
mergeSort(theArray,0,5) three function will be called are mergeSort(theArray,0,2),
mergeSort(theArray,3,5) and merge(theArray,0,2,5).

mergeSort(theArray,0,2); mergeSort(theArray,3,5);

mergeSort(theArray,0,5);

merge(theArray,0,2,5);

divide the array
into pieces

small pieces are
merged

	

	

8.8. Program 5.7 is the implementation of the merge() function in C++.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

//Program 5.7
const int MAX_SIZE = maxNmbrItemInArry;
void merge(DataType theArray[],
 int first, int mid, int last)
{ DataType tempArray[MAX_SIZE]; // temp array
 int first1 = first; // first subarray begin
 int last1 = mid; // end of first subarray
 int first2 = mid + 1; // secnd subarry begin
 int last2 = last; // end of secnd subarry

 // while both subarrays are not empty,
 // copy the smaller item into the temporary array
 int index = first1;
 // next available location in tempArray
 for (; (first1 <= last1) && (first2 <= last2); ++index)
 {if (theArray[first1] < theArray[first2])
 { tempArray[index] = theArray[first1];
 ++first1; }
 else
 { tempArray[index] = theArray[first2];
 ++first2; }
 } // end if

 for (; first1 <= last1; ++first1, ++index)
 tempArray[index] = theArray[first1];
 // finish off the second subarray, if necessary

 for (; first2 <= last2; ++first2, ++index)
 tempArray[index] = theArray[first2];

 // copy the result back into the original array
 for (index = first;index <= last; ++index)
 theArray[index] = tempArray[index];
 } // end merge function

 Duplicate	 	
the	 positions	

Moves	 the	
smaller	 	
item	 into	 	
temporary	 array	

move	 the	
remaining	 	
items	 to	 the	
temporary	 array	
	

 The	 temporary	
array	 is	 copied	 	
back	 into	 the	
original	 array	

	

	

8.9. Example of calling merge(theArray,0,2,4)function in merge sort implementation

to sort array of integer [8, 1, 4, 3. 2] into ascending order.

8.10. Exa

mple
of

merg
e

sort
impl
eme
ntati

on to
sort

array
of

integer [38 16 27 39 12 27] into ascending order. The numbered function is the
calling sequence of the functions in the algorithms.

bahiah@utm.mybahiah@utm.my

1. mergeSort(theArray,0,5);

2. mergeSort(theArray,0,2);

3. mergeSort(theArray,0,1);

4. mergeSort(theArray,0,0);
5. mergeSort(theArray,1,1);

6. merge(theArray,0,1);

7. mergeSort(theArray,2,2);

8. merge(theArray,0,2);

11. mergeSort(theArray,3,3);
12. mergeSort(theArray,4,4);

10. mergeSort(theArray,3,4);

13. merge(theArray,3,4);

15. merge(theArray,3,5);

16. merge(theArray,0,5);

9. mergeSort(theArray,3,5);

	

	

• The execution of the C++ program to sort array of integers :
 [38 16 27 39 12 27]
into ascending order gives the following sequence of output tracing.

8.11. Merge sort analysis:
• The list is always divided into two balanced list (or almost balanced for odd

size of list)
• The number of calls to repeatedly divide the list until there is one item left in

the list is:

• Assuming that the left segment and the right segment of the list have

the equal size (or almost equal size), then x ≈ lg n . The number of
iteration is approximately n lg n.

• The same number of repetition is needed to sort and merge the list (refer
to the following illustration). Thus, as a whole the number of steps
needed to sort data using merge sort is 2n lg n, which is O(n lg n).

Unsorted data [38 16 27 39 12 27]

Content of divided sublist with first=0 & last=5 [38 16 27 39 12 27]
Content of divided sublist with first=0 & last=2 [38 16 27]
Content of divided sublist with first=0 & last=1 [38 16]
Content of divided sublist with first=0 & last=0 [38]
Content of divided sublist with first=1 & last=1 [16]
Content of merged list with first=0 & last=1 [16 38]
Content of divided sublist with first=2 & last=2 [27]
Content of merged list with first=0 & last=2 [16 27 38]
Content of divided sublist with first=3 & last=5 [39 12 27]
Content of divided sublist with first=3 & last=4 [39 12]
Content of divided sublist with first=3 & last=3 [39]
Content of divided sublist with first=4 & last=4 [12]
Content of merged list with first=3 & last=4 [12 39]
Content of divided sublist with first=5 & last=5 [27]
Content of merged list with first=3 & last=5 [12 27 39]
Content of merged list with first=0 & last=5 [12 16 27 27 38 39]

Sorted data [12 16 27 27 38 39]
Press any key to continue . . .

14. mergeSort(theArray,5,5);

	

	

8.12. Summary of merge sort analysis:

• Worse Case Analysis : O(n * log2n)
• Average case Analysis: O(n * log2n)
• Performance is independent of the initial order of the array items
• Advantage – Merge sort is an extremely fast algorithm
• Disadvantage – Merges sort requires a second array (temporary array) as

large as the original array

9.0 QUICK SORT

9.1. Quick sort is similar with Merge sort in using divide and conquer technique.

9.2. Differences of Quick sort and Merge sort :

Quick Sort Merge Sort

Partition the list based on the pivot
value

Partition the list by dividing the list
into two

No merge operation is needed since
when there is only one item left in the
list to be sorted, all other items are
already in sorted position.

Merge operation is needed to
sort and merge the item in the
left and right segment.

9.3. The divide-and-conquer algorithm strategy:

i. Choose a pivot (first element in the array)
ii. Partition the array about the pivot

o items < pivot
o items >= pivot
o Pivot is now in correct sorted position

iii. Sort the left section again until there is one item left
iv. Sort the right section again until there is one item left

	

	

9.4. Illustration of the recursive Quick Sort algorithm strategy.

9.5. Two functions in quick sort implementation are;

quickSort() and partition().
i. quickSort()function

o A recursive function that will partition the list into several sub lists until there
is one item left in the sub list

ii. partition()function
o The function organizes the data so that the items with values less than

pivot will be on the left of the pivot, while the values at the right pivot
contains items that are greater or equal to pivot.

9.6. Program 5.8 is the implementation of the quickSort() function in C++.

• Recursive function that will partition the list into several sub lists until there is
one item left in the sub list.

• Example of calling quickSort(T,0,8) function in quick sort implementation to
sort array of integer [5 15 7 2 4 1 8 10 3] into ascending order. In function
quickSort(T,0,8) three function will be called are partition(T,0,8),
quickSort(T,0,4) and merge(T,5,8). Refer to the following figure shows the
calling function.

1
2
3
4
5
6
7
8

9

//Program 5.8
void quickSort (dataType arrayT[],
 int first , int last)
{
 int cut;
 if (first<last){
 cut = partition(T, first,last);
 quickSort(T, first,cut);
 quickSort (T, cut+1, last);
 }
}

Cut	 the	 list	 into	 2	
sub	 lists	 based	 on	
cut	 value	

Identify	 pivot	 or	 cutting	 point	
&	 rearrange	 the	 list	 	 based	 on	
pivot	 value	

	

	

9.7. Program 5.9 is the implementation of the partition() function in C++.

• Organize the data so that the items with values less than pivot will be on the
left of the pivot, while the values at the right pivot contains items that are
greater or equal to pivot.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//Program 5.9
int partition(int T[], int first,int last)
{
 int pivot, temp;
 int loop, cutPoint, bottom, top;
 pivot=T[first];
 bottom=first; top= last;
 loop=1; //always TRUE

 while (loop) {
 while (T[top]>pivot){
 // find smaller value than
 // pivot from top array
 top--;

Identify pivot

From top
Find value < pivot
& skip value > pivot
	

	

	

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 }

 while(T[bottom]<pivot){
 //find larger value than
 //pivot from bottom
 bottom++;
 }

 if (bottom<top) {
 // change pivot place
 temp=T[bottom];
 T[bottom]=T[top];
 T[top]=temp;
 }
 else {
 loop=0; //loop false
 cutPoint = top;
 }//end if
 }// end while
 return cutPoint;
}//end function

• The following figure shows example of calling partition(T,0,8) function in quick

sort implementation to sort array of integer [5 15 7 2 4 1 8 10 3] into ascending
order. After execution of function partition(), pivot 5 will be placed at index 4
and the value 4, will be returned to function quickSort() for further partition.

From bottom
Find value > pivot
& skip value < pivot

Stop loop

	

	

9.8. Referring to the quick sort implementation figure at point 9.6, the number at

the sequence of calling functions for quickSort()and partition() functions can
be mapped with the following output display.

9.9. Quick sort analysis.
• The efficiency of quick sort depends on the pivot value.
• This class chose the first element in the array as pivot value.
• However, pivot can also be chosen at random, or from the last element in

the array.
• The worst case for quick sort occurs when the smallest item or the largest

item always be chosen as pivot value causing the left partition and the
right partition not balance.

Content of the array before sorting : 5 15 7 2 4 1 8

The sublist -> 1 with pivot = 5
3 15 7 2 4 1 8 10 3
The sublist -> 2 with pivot = 3
3 1 4 1 2 5
The sublist -> 3 with pivot = 2
2 1 3
The sublist -> 4 with pivot = 1
1 2
The sublist -> 5 with one piece item = 1

The sublist -> 6 with one piece item = 2

The sublist -> 7 with one piece item = 3

The sublist -> 8 with pivot = 4
4 5
The sublist -> 9 with one piece item = 4

The sublist -> 10 with one piece item = 5

The sublist -> 11 with pivot = 7
7 8 10 15
The sublist -> 12 with one piece item = 7

The sublist -> 13 with pivot = 8
8 10 15
The sublist -> 14 with one piece item = 8

The sublist -> 15 with pivot = 10
10 15
The sublist -> 16 with one piece item = 10
8 10 15
The sublist -> 17 with one piece item = 15
8 10 15

	

	

9.10. Example of the worst case quick sort: sorted array [1 2 5 4] causing imbalance

partition.

9.11. The best case for quick sort

happens when the list is
partition into balance segment.
• Must choose the right

pivot that can put
other items in
balance situation.

• The number of comparisons in partition process for base case situation is as
follows:

• The best case for quick sort happen when the left segment and the right

segment is balanced (have the same size) with value x ≈ lg n .
• Example of best case quick sort: array[1 2 5 4].

9.12. The number of steps to get the balance segment while partitioning the array is
lg n and the number of comparisons depend on the size list, n.

	

	

9.13. Summary of quick sort analysis:

• Average case: O(n * log2n)
• Worst case: O(n2) - When the array is already sorted and the smallest item is

chosen as the pivot
• Quicksort is usually extremely fast in practice
• Even if the worst case occurs, quicksort’s performance is acceptable for

moderately large arrays

10.0 SUMMARY

10.1. Order-of-magnitude analysis and Big O notation measure an algorithm’s time

requirement as a function of the problem size by using a growth-rate function.

10.2. To compare the efficiency of algorithms

i. Examine growth-rate functions when problems are large
ii. Consider only significant differences in growth-rate functions

10.3. Worst-case and average-case analyses

• Worst-case analysis considers the maximum amount of work an algorithm will
require on a problem of a given size

• Average-case analysis considers the expected amount of work that an
algorithm will require on a problem of a given size

10.4. Order-of-magnitude analysis can be the basis of your choice of an ADT

implementation.

10.5. Selection sort, Bubble sort, and Insertion sort are all O(n2) algorithms. Quick sort

and merge sort are two very fast recursive sorting algorithms.

	

	

10.6. Approximate growth rates of time required for eight sorting algorithms.

10.7. A comparison of growth-rate functions shows that O(n log n) algorithm is

significantly faster than O(n2) algorithm.

