

ALGORITHM EFFICIENCY

DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING UNIVERSITI TEKNOLOGI MALAYSIA UTM

MODULE 4: ALGORITHM EFFICIENCY

OBJECTIVES FOR STUDENTS

- 1. To analyze the number of steps of algorithms relative to the increasing of input size, *n*.
- 2. Find the class of complexity in big 'O' notation.

KEY CONCEPT

1.0 INTRODUCTION TO ALGORITHM

- 1.1 **Algorithm analysis** Study the efficiency of algorithms when the input size grows based on the number of steps, the amount of computer time and space.
- 1.2 **Analysis of algorithms** is a major field that provides **tools** for evaluating the efficiency of different solutions
- 1.3 What is an **efficient algorithm**?
 - Faster is better (Time) How do you measure time? Wall clock? Computer clock?
 - Less space demanding is better But if you need to get data out of main memory it takes time.
- 1.4 Algorithm analysis should be independent of :
 - Specific implementations and coding tricks (programming language, control statements Pascal, C, C++, Java)
 - Specific Computers (hw chip, OS, clock speed)
 - Particular set of data (string, int, float)
- 1.5 For a particular problem size, we may be interested in:
 - Worst-case efficiency: Longest running time for *any* input of size *n* A determination of the maximum amount of time that an algorithm requires to solve problems of size *n*.
 - **Best-case efficiency**: Shortest running time for *any* input of size *n* A determination of the minimum amount of time that an algorithm requires to solve problems of size *n*.
 - Average-case efficiency: Average running time for all inputs of size *n* A determination of the average amount of time that an algorithm requires to solve problems of size *n*.

- 1.6 The worst case is always considered as the maximum boundary for execution time or memory space for any input size. Execution time for the worst case is the complexity time.
- 1.7 Example of algorithm: sequential search of **n** elements
 - Best-case: We get lucky and find the target in the first place we look. O(n) =
 - Worst-case: We look at every element before finding (or not finding) the target. O(n) = n
 - Average-case: Depends on the probability (p) that the target will be found.
 O(n) = n/2

2.0 COMPLEXITY OF ALGORITHM

2.1 Complexity time can be represented by **Big 'O' Notation** (notation that used to show the complexity time of algorithms). Big 'O' notation is denoted as : **O(acc)** whereby: **O** – order and **acc** – class of algorithm complexity.

2.2 Big O Notation

Notation	Execution time / number of step
0(1)	Constant function, independent of input size, n . Example: Finding the first element of a list.
O(logxn)	Problem complexity increases slowly as the problem size increases. Squaring the problem size only doubles the time. Characteristic: Solve a problem by splitting into constant fractions of the problem (e.g., throw away ½ at each step)
O(n)	Problem complexity increases linearly with the size of the input, n . Example: counting the elements in a list.
O(n logxn)	Log-linear increase - Problem complexity increases a little faster than n . Characteristic: Divide problem into sub problems that are solved the same way. Example: mergesort
O(n²)	Quadratic increase. Problem complexity increases fairly fast, but still manageable. Characteristic: Two nested loops of size n .
O(n³)	Cubic increase. Practical for small input size, n .
O(2 ⁿ)	Exponential increase - Increase too rapidly to be practical. Problem complexity increases very fast. Generally unmanageable for any meaningful n . Example: Find

(a)

all subsets of a set of n elements.

2.3 Order-of-Magnitude Analysis and Big O Notation. Figure 4.1 shows comparison of growth-rate functions in tabular and graphical form/

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	10 ⁵	10 ⁶
$n * \log_2 n$	30	664	9,965	10 ⁵	10 ⁶	10 ⁷
n²	10 ²	104	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²
n ³	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
2 ⁿ	10 ³	10 ³⁰	10 ³⁰	¹ 10 ^{3,01}	⁰ 10 ³⁰	10 ^{301,030}

A comparison of growth-rate functions: (a) in tabular form

• Order of increasing complexity - $O(1) < O(\log_x n) < O(n) < O(n \log_2 n) < O(n^2) < O(n^3) < O(2^n)$

Notation	n = 8	n = 16	n = 32
O(log2n)	3	4	5
O(n)	8	16	32
O(n log₂n)	24	64	160
O(n²)	64	256	1024
O(n³)	512	4096	32768
O(2 ⁿ)	256	65536	4294967296

• Example of algorithm (only for **cout** operation):

Notation	Code
O(1)	int counter = 1; cout << "Arahan cout kali ke " << counter << "\n";
O(logxn)	<pre>int counter = 1; int i = 0; for (i = x; i <= n; i = i * x) // x must be > than 1 { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>
O(n)	<pre>int counter = 1; int i = 0; for (i = 1; i <= n; i++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>
O(n logxn)	<pre>int counter = 1; int i = 0; int j = 1; for (i = x; i <= n; i = i * x) // x must be > than 1 { while (j <= n) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; j++; } }</pre>
O(n²)	int counter = 1; int i = 0; int j = 0; for (i = 1; i <= n; i++) {

0	UTM	1		ų	
1	2	2			
-	ſ		Y	-	

	for (j = 1; j <= n; j++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; } }
O(n³)	<pre>int counter = 1; int i = 0; int j = 0; int k = 0; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { for (j = 1; j <= n; j++) { cout << "Arahan cout kali ke " << counter << "\n";</pre>
O(2 ⁿ)	<pre>int counter = 1; int i = 1; int j = 1; while (i <= n) { j = j * 2; i++; } for (i = 1; i <= j; i++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>

- 2.4 The complexity time of algorithm can be determined theoretically by calculation or practically by experiment or implementation.
- 2.5 Determine the complexity time of algorithm practically
 - Implement the algorithms in any programming language and run the programs
 - Depend on the compiler, computer, data input and programming style.
- 2.6 Determine the complexity time of algorithm theoretically
 - The complexity time is related to the number of steps / operations.
 - Complexity time can be determined by
 - o Count the number of steps and then find the class of complexity, or
 - \circ $\;$ Find the complexity time for each step and then count the total.

2.7 The following algorithm is categorized as **O(n)**.

```
int counter = 1;
int i = 0;
for (i = 1; i <= n; i++)
{
    cout << "Arahan cout kali ke " << counter << "\n";
    counter++;
}
```

Num	statements
1	int counter = 1;
2	int i = 0;
3	i = 1
4	i <= n
5	i++
6	cout << "Arahan cout kali ke " << counter << "\n"
7	counter++

• Statement 3, 4 and 5 are the loop's control and can be assumed as one statement.

Num	Statements
1	int counter = 1;
2	int i = 0;
3	i = 1; i <= n; i++
6	cout << "Arahan cout kali ke " << counter << "\n"
7	counter++

- Statement 3, 6 and 7 are in the repetition structure.
- It can be expressed by summation series.

$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + \dots + f(n) = n$$

where *f(i)* – statement executed in the loop

• Example, if n = 5, i = 1.

$$\sum_{i=1}^{5} f(i) = f(1) + f(2) + f(3) + f(4) + f(5) = 5$$

The statement that represented by **f(i)** will be repeated 5 times.

• Example, if **n** = 5, **i** = 3

$$\sum_{i=3}^{5} f(i) = f(3) + f(4) + f(5) = 3$$

The statement that represented by **f(i)** will be repeated 3 times.

• Example: if **n** = 1, **i** = 1

$$\sum_{i=1}^{1} f(i) = f(1) = 1$$

The statement that represented by **f(i)** will be executed only once.

Statements	Number of steps
int counter = 1;	1
int i = 0;	1
i = 1; i = n; i++	n
cout << "Arahan cout kali ke " << counter << "\n"	n
counter++	n

Total steps:

2.8 Besides by summation series, the steps can be calculated using the following formula:

Number of steps = b - a + 1 where,

- $\circ~$ b is the final conditions to control the loop,
- \circ a is the initial conditions of the control loop,
- 1 is the constant at beginning of the loop.

- 2.9 Consider the largest factor.
 - Algorithm complexity can be categorized as **O(n)**

Algorithm	Number of Steps
void sample4 () { for (int a=2; a<=n; a++) cout << "Contoh kira langkah "; }	0 0 n-2+1 = n-1 (n-1).1 = n-1 0
Total steps	2(n-1)

Total steps = 2(n-1), Complexity Time = O(n)

Algorithm	Number of steps
void sample5 () { for (int a=1; a<=n-1; a++) cout << " Contoh kira langkah "; }	0 0 n-1-1+1 = n-1 (n-1).1 = n-1 0
Total steps	2(n-1)

Total steps = 2(n-1), Complexity Time = O(n)

Algorithm	Number of Steps
<pre>void sample6 () { for (int a=1; a<=n; a++) for (int b=1; b<=n; b++) cout << " Contoh kira langkah "; }</pre>	0 0 n-1+1 = n n.(n-1+1) = n.n n.n.1 = n.n 0
Total steps	n+2n ²

Total Steps = $n+2n^2$, Complexity Time = $O(n^2)$

Algorithm	Number of Steps
<pre>void sample7 () { for (int a=1; a<=n; a++) for (int b=1; b<=a; b++) cout << " Contoh kira langkah "; }</pre>	0 0 n-1+1=n n.(n+1)/2 n.(n+1)/2 0
Total steps	2n+n ²

Total steps = 2n+n², Complexity Time = O(n²)

To get **n.(n+1)/2**, we used summation series as shown below:

$$\sum_{a=1}^{n} \sum_{b=1}^{a} =n(1+2+3+4+...+n)$$
$$= \frac{n(n+1)}{2}$$
$$= \frac{n^{2}+n}{2}$$

2.10 Count the number of steps and find the Big 'O' notation for the following algorithm

```
int counter = 1;
int i = 0;
int j = 1;
for (i = 3; i <= n; i = i * 3) {
    while (j <= n) {
        cout << "Arahan cout kali ke " << counter << "\n";
        counter++;
        j++;
        }
}
```

Statements	Number of steps
int counter = 1;	$\sum_{i=1}^{1} f(i) = 1$

UTM ONLINE LEARNING

int i = 0;	$\sum_{i=1}^{1} f(i) = 1$
int j = 1;	$\sum_{i=1}^{1} f(i) = 1$
i = 3; i <= n; i = i * 3	$\sum_{i=3}^{1} f(i) = f(3) + f(9) + f(27) + \dots + f(n) = \log_{3} n$
j <= n	$\sum_{i=3}^{n} f(i) \sum_{j=1}^{n} f(j) = \log_3 n.n$
cout << "Arahan cout kali ke " << counter << "\n";	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(j) \cdot \sum_{i=1}^{1} f(i) = \log_{3} n \cdot n \cdot 1$
counter++;	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(j) \cdot \sum_{i=1}^{1} f(i) = \log_{3} n \cdot n \cdot 1$
j++;	$\sum_{i=3}^{n} f(i) \sum_{j=1}^{n} f(j) \sum_{i=1}^{1} f(i) = \log_{3} n.n.1$
	1

Total steps:

 $=> 1 + 1 + 1 + \log_3 n + \log_3 n \cdot n + \log_3 n \cdot n \cdot 1 + \log_3 n \cdot n \cdot 1 + \log_3 n \cdot n \cdot 1$ $=> 3 + \log_3 n + \log_3 n \cdot n$ => 3 + log₃n + 4n log₃n

Consider the largest factor for : 3 + log₃n + 4n log₃n

(4n log₃n)

- and remove the coefficient (n log₃n)
- In asymptotic classification, the base of the log can be omitted as shown in this formula:

$\log_{a}n = \log_{b}n / \log_{b}a$

- Thus, $\log_3 n = \log_2 n / \log_2 3 = \log_2 n / 1.58...$
- Remove the coefficient 1/1.58..
- So we get the complexity time of the algorithm is O(n log₂n)

2.11 Summary on algorithm efficiency

- Algorithm analysis to study the efficiency of algorithms when the input size grow, based on the number of steps, the amount of computer time and space
- Can be done using Big O notation by using growth of function.
- Order of growth for some common function:
 O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)
- Three possible states in algorithm analysis best case, average case and worst case.