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MODULE 3: RECURSIVE 

	  
OBJECTIVES FOR STUDENTS 

 
1. Identify problem solving characterestics to be solved using recursive. 
 
2. Trace the implementation of a recursive function. 
 
3. Write recursive function to solve problems. 
 
 

KEY CONCEPT 

 
1.0 INTRODUCTION TO RECURSION 
 
 
1.1 Repetitive algorithm is a process whereby a sequence of operations is executed 

repeatedly until certain condition is achieved. Repetition can be implemented 
using loop : while, for or do.. while. 

 
1.2 Besides repetition using loop, C++ allow programmers to implement recursive. 

Not all programming language allow recursive implement, e.g. Basic language. 
 
1.3 Recursive is a repetitive process in which an algorithm calls itself. Recursion can 

be used to replace loops. Recursively defined data structures, like lists, are very 
well-suited to processing by recursive procedures and functions. 
 

1.4 A recursive procedure is mathematically more elegant than one using loops. 
Sometimes procedures can become straightforward and simple using recursion 
as compared to loop solution procedure. 
 

1.5 Advantages of recursive - A recursive procedure is mathematically more 
elegant than one using loops. Sometimes procedures that would be tricky to 
write using a loop are straightforward using recursion. Recursive is a powerful 
problem solving approach, since problem solving can be expressed in an easier 
and neat approach.  

 
1.6 Drawback of recursive - Execution running time for recursive function is not 

efficient compared to loop, since every time a recursive function calls itself, it 
requires multiple memories to store the internal address of the function.  

 



	  

	  

 
2.0 DESIGNING RECURSIVE ALGORITHM 
 
 
2.1 Recursive solution - Not all problems can be solved using recursive. Problem 

that can be solved using recursive is a problem that can be solved by 
breaking the problem into smaller instances of problem, solve and combine. 
Every recursive definition has two parts: 
• BASE CASE(S): case(s) so simple that they can be solved directly 
• RECURSIVE CASE(S): more complex – make use of recursion to solve 

smaller sub-problems and combine into a solution to the larger problem 
 
2.2 Rules for designing recursive algorithm: 

• Determine the base case - There are one or more terminal cases whereby 
the problem will be solved without calling the recursive function again.  

• Determine the general case – recursive call by reducing the size of the 
problem.  

• Combine the base case and general case into an algorithm. 
 

2.3 Recursive algorithm  
 

if (terminal case is reached)  // base case 
 <solve the problem> 
else   // general case 
 < reduce the size of the problem and  
   call recursive function > 
 

 

 
3.0 IMPLEMENTATION OF THE RECURSIVE ALGORITHMS 
 
 
3.1 Classic examples of recursive algorithms: 

• Multiplying numbers 
• Find Factorial value. 
• Fibonacci numbers 

 
3.2 Multiplication of 2 numbers can be achieved by using addition method.  

• Example : To multiply 8 x 3, the result can also be achieved by adding 
value 8, 3 times as follows:   

8 + 8 + 8 = 24 
• Program 3.1 shows the implementation of multiply using loop. 
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// Program 3.1  
int Multiply(int M,int N) 
{ for (int i=1,i<=N,i++) 
    result += M; 
  return result; 
}//end Multiply() 

 



	  

	  

 
 

• Steps to solve Multiply() problem recursively: 
o Problem size is represented by variable N. In this example, problem size 

is 3. Recursive function will call Multiply() repeatedly by reducing N by 
1 for each respective call. 

o Terminal case is achieved when the value of N is 1 and recursive call 
will stop. At this moment, the solution for the terminal case will be 
compted and the result is returned to the called function.  

o The simple solution for this example is represented by variable M. In this 
example, the value of M is 8. 

• Implementation of recursive function: Multiply(), refer toProgram 3.2.  
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// Program 3.2  
int Multiply (int M,int N) 
{ 
 if (N==1)  
  return M; 
 else  
  return M + Multiply(M,N-1); 
} 

 
3.3 Three important factors for recursive implementation:  

• There is a condition where the function will stop calling itself. (if this 
condition is not fulfilled, infinite loop will occur) 

• Each recursive function call, must return to the called function.  
• Variable used as condition to stop the recursive call must change 

towards terminal case. 
 
3.4 Tracing Recursive Implementation for Multiply(8,3). Figure 3.1 illustrates the 

calling recursive function steps. Returning the Multiply(8,3) result to the called 
function, shown in steps in Figure 3.2. 

 
3.5 Factorial Problem 

• Problem : Get Factorial value for a positive integer number. 
• Solution : The factorial value can be achieved as follows: 

0! is equal to 1 
1! is equal to 1 x 0! = 1 x 1 = 1 
2! is equal to 2 x 1! = 2 x 1 x 1 = 2 
3! is equal to 3 x 2! = 3 x 2 x 1 x 1 = 6 
4! is equal to 4 x 3! = 4 x 3 x 2 x 1 x 1 = 24 
N! is equal to N x (N-1)! For every N>0 

 
• Solving Factorial Recursively  

o The simple solution for this example is represented by the factorial 
value equal to 1. 



	  

	  

o N represent the factorial size. The recursive process will call factorial() 
function recursively by reducing N by 1.  

o Terminal case for factorial problem is when N equal to 0. The 
computed result is returned to called function.  
 

 
Figure 3.1 Calling recursive function steps for Multiply(8,3) 

 



	  

	  

 
Figure 3.2 Multiply(8,3)returning recursive function steps  

 
• Factorial function - Here is a function that computes the factorial of a 

number N without using a loop. 
o It checks whether N is equal 0. If so, the function just returns 1. 
o Otherwise, it computes the factorial of (N – 1) and multiplies it by N. 
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// Program 3.3  
int Factorial (int N ) 
{ /*start Factorial*/ 
if (N==0) 
 return 1; 
else 
 return N * Factorial (N-1); 
} /*end Factorial 

 
• Figure 3.3 shows the calling execution of Factorial(3) 

 



	  

	  

 
Figure 3.3 Factorial(3)calling steps 

 
•  Terminal case for Factorial(3) is achieved  in Figure 3.4. 

 
Step 5: Run Factorial() 
 
   Sub problem 4: int Factorial (int N ) 
   Value for N=0 
   Since N=0, terminal case is achieved. 
 
 
 

Figure 3.4 Factorial(3)terminal case 
 

• Figure 3.5 shows the steps for return value for Factorial(3) 
 

 

return  1 	  



	  

	  

 
Figure 3.5 Factorial(3)returning steps 

 
3.6 Fibonacci Problem 

• Problem: Get Fibonacci series for an integer positive. 
• Fibonacci Siries : 0, 1, 1, 2, 3, 5, 8, 13, 21,….. 
• Starting from 0 and have features that every Fibonacci series is the result 

of adding 2 previous Fibonacci numbers. 
• Solution: Fibonacci value of a number can be computed as follows: 

 
Fibonacci(0) = 0 
Fibonacci(1) = 1 
Fibonacci(2) = 1 
Fibonacci(3) = 2 
Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

 
	  
	  
	  
	  
	  



	  

	  

	  
• Solving Fibonacci Recursively 

o The simple solution for this example is represented by the Fibonacci 
value equal to 1. 

o N represents the series in the Fibonacci number. The recursive process 
will integrate the call of two Fibonacci() function.  

o Terminal case for Fibonacci problem is when N equal to 0 or N equal 
to 1. The computed result is returned to the called function.  

  
• Fibonacci() function 
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// Program 3.4  
int Fibonacci (int N) 
{ if (N<=0) 
 return 0; 
  else if (N==1) 
 return 1; 
  else 
 return Fibonacci(N-1) + Fibonacci (N-2); 
} 

 
• Figure 3.6 shows the recursive trace for Fibonacci() function . Each step 

calling and returning is labeled from L1 to L10. 
 

 
Figure 3.6 Fibonacci(3)execution steps 

 
 
 
 
 
 
 



	  

	  

 
3.7 Infinite Recursive 

• It is a state whereby the recursive functions run indefinitely and must be 
avoided in a programming discipline. 

• Characteristics of a recursive function to avoid infinite recursion: 
o must have at least 1 base case (to terminate the recursive sequence) 
o each recursive call must get closer to a base case 

 
• Example of infinite recursive is shown in Program 3.5. 

 
 
 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

// Program 3.5  
void printIntegers(int n); 
main() 
{  int number; 
 cout<<"\nEnter an integer value :"; 
 cin >> number; 
   printIntegers(number); 
} 
void printIntegers (int nom) 
{  cout << "\Value : " << nom; 
   printIntegers(nom); 
} 
 

 
• The correct recursive function is shown in Program 3.6. 
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// Program 3.6  
void printIntegers(int n); 
 
main() 
{ int number; 
  cout<<"\nEnter an integer value :"; 
  cin >> number; 
  printIntegers(number); 
} 
 
void printIntegers(int nom) 
{  if (nom >= 1)  
   {  cout << "\Value : " << nom; 
      printIntegers (nom-2); 
   } 
} 

 
 
 
 

1. No	  condition	  
satatement	  to	  stop	  
the	  recursive	  call.	  	  

2. Terminal	  case	  
variable	  does	  not	  
change.	  	  

	  

condition	  statement	  
to	  stop	  the	  recursive	  
call	  and	  changes	  the	  
terminal	  case	  during	  
recursive	  call	  
	  


