## MODULE 3

## RECURSIVE

DATA STRUCTURE AND ALGORITHMS

## FACULTY OF COMPUTING <br> UNIVERSITI TEKNOLOGI MALAYSIA

## MODULE 3: RECURSIVE

## OBJECTIVES FOR STUDENTS

1. Identify problem solving characterestics to be solved using recursive.
2. Trace the implementation of a recursive function.
3. Write recursive function to solve problems.

## KEY CONCEPT

### 1.0 INTRODUCTION TO RECURSION

1.1 Repetitive algorithm is a process whereby a sequence of operations is executed repeatedly until certain condition is achieved. Repetition can be implemented using loop : while, for or do.. while.
1.2 Besides repetition using loop, C++ allow programmers to implement recursive. Not all programming language allow recursive implement, e.g. Basic language.
1.3 Recursive is a repetitive process in which an algorithm calls itself. Recursion can be used to replace loops. Recursively defined data structures, like lists, are very well-suited to processing by recursive procedures and functions.
1.4 A recursive procedure is mathematically more elegant than one using loops. Sometimes procedures can become straightforward and simple using recursion as compared to loop solution procedure.
1.5 Advantages of recursive - A recursive procedure is mathematically more elegant than one using loops. Sometimes procedures that would be tricky to write using a loop are straightforward using recursion. Recursive is a powerful problem solving approach, since problem solving can be expressed in an easier and neat approach.
1.6 Drawback of recursive - Execution running time for recursive function is not efficient compared to loop, since every time a recursive function calls itself, it requires multiple memories to store the internal address of the function.

### 2.0 DESIGNING RECURSIVE ALGORITHM

2.1 Recursive solution - Not all problems can be solved using recursive. Problem that can be solved using recursive is a problem that can be solved by breaking the problem into smaller instances of problem, solve and combine. Every recursive definition has two parts:

- BASE CASE(S): case(s) so simple that they can be solved directly
- RECURSIVE CASE(S): more complex - make use of recursion to solve smaller sub-problems and combine into a solution to the larger problem
2.2 Rules for designing recursive algorithm:
- Determine the base case - There are one or more terminal cases whereby the problem will be solved without calling the recursive function again.
- Determine the general case - recursive call by reducing the size of the problem.
- Combine the base case and general case into an algorithm.


### 2.3 Recursive algorithm

```
if (terminal case is reached) // base case
    <solve the problem>
else // general case
    < reduce the size of the problem and
    call recursive function >
```


### 3.0 IMPLEMENTATION OF THE RECURSIVE ALGORITHMS

3.1 Classic examples of recursive algorithms:

- Multiplying numbers
- Find Factorial value.
- Fibonacci numbers
3.2 Multiplication of 2 numbers can be achieved by using addition method.
- Example : To multiply $\mathbf{8 \times 3}$, the result can also be achieved by adding value 8,3 times as follows:

$$
8+8+8=24
$$

- Program 3.1 shows the implementation of multiply using loop.

```
1 // Program 3.1
2 int Multiply(int M,int N)
3 { for (int i=1,i<=N,i++)
result += M;
    return result;
}//end Multiply()
```

- Steps to solve Multiply() problem recursively:
- Problem size is represented by variable $\mathbf{N}$. In this example, problem size is 3 . Recursive function will call Multiply() repeatedly by reducing $\mathbf{N}$ by 1 for each respective call.
- Terminal case is achieved when the value of $\boldsymbol{N}$ is 1 and recursive call will stop. At this moment, the solution for the terminal case will be compted and the result is returned to the called function.
- The simple solution for this example is represented by variable $\boldsymbol{M}$. In this example, the value of $\boldsymbol{M}$ is 8 .
- Implementation of recursive function: Multiply(), refer toProgram 3.2.

```
// Program 3.2
int Multiply (int M,int N)
{
if (N==1)
    return M;
    else
    return M + Multiply(M,N-1);
}
```

3.3 Three important factors for recursive implementation:

- There is a condition where the function will stop calling itself. (if this condition is not fulfilled, infinite loop will occur)
- Each recursive function call, must return to the called function.
- Variable used as condition to stop the recursive call must change towards terminal case.
3.4 Tracing Recursive Implementation for Multiply( $\mathbf{8}, \mathbf{3}$ ). Figure 3.1 illustrates the calling recursive function steps. Returning the Multiply $(8,3)$ result to the called function, shown in steps in Figure 3.2.


### 3.5 Factorial Problem

- Problem : Get Factorial value for a positive integer number.
- Solution : The factorial value can be achieved as follows:

0 ! is equal to 1
1 ! is equal to $1 \times 0!=1 \times 1=1$
2 ! is equal to $2 \times 1!=2 \times 1 \times 1=2$
3 ! is equal to $3 \times 2!=3 \times 2 \times 1 \times 1=6$
4 ! is equal to $4 \times 3$ ! $=4 \times 3 \times 2 \times 1 \times 1=24$
N ! is equal to $\mathbf{N} \times(\mathbf{N}-1)$ ! For every $\mathbf{N}>0$

## - Solving Factorial Recursively

- The simple solution for this example is represented by the factorial value equal to 1 .
- $\mathbf{N}$ represent the factorial size. The recursive process will call factorial() function recursively by reducing $\mathbf{N}$ by 1 .
- Terminal case for factorial problem is when $\mathbf{N}$ equal to 0 . The computed result is returned to called function.


Figure 3.1 Calling recursive function steps for Multiply(8,3)

Step 8: Final result after multiply 2 numbers.


Figure 3.2 Multiply(8,3)returning recursive function steps

- Factorial function - Here is a function that computes the factorial of a number N without using a loop.
- It checks whether $\mathbf{N}$ is equal 0 . If so, the function just returns 1 .
- Otherwise, it computes the factorial of ( $\mathbf{N}-1$ ) and multiplies it by $\mathbf{N}$.

```
l lll Program 3.3 
```

- Figure 3.3 shows the calling execution of Factorial(3)


Figure 3.3 Factorial(3)calling steps

- $\quad$ Terminal case for Factorial(3) is achieved in Figure 3.4.


## Step 5: Run Factorial()

Sub problem 4: int Factorial (int $\mathbf{N}$ )
Value for $\mathbf{N}=\mathbf{0}$
Since $\mathbf{N}=\mathbf{0}$, terminal case is achieved.
return 1
Figure 3.4 Factorial(3)terminal case

- Figure 3.5 shows the steps for return value for Factorial(3)

STEP 10: Final result for Factorial (3).
RESULT:


STEP 9: Retum the result to the dalled function main ().
Terminal case is achieved for Sutp problem 1.


STEP 8: Retum the result to Sub problem 1


STEP 7: Retum the result to Sub problem 2.

STEP 6: Retum the result to Sub problem 3.
[
Terminal case is achieved for Sub problem 4.


Figure 3.5 Factorial(3)returning steps

### 3.6 Fibonacci Problem

- Problem: Get Fibonacci series for an integer positive.
- Fibonacci Siries: $0,1,1,2,3,5,8,13,21, \ldots .$.
- Starting from 0 and have features that every Fibonacci series is the result of adding 2 previous Fibonacci numbers.
- Solution: Fibonacci value of a number can be computed as follows:

Fibonacci(0) $=0$
Fibonacci(1) = 1
Fibonacci(2) = 1
Fibonacci(3) $=2$
Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

- Solving Fibonacci Recursively
- The simple solution for this example is represented by the Fibonacci value equal to 1.
- $\mathbf{N}$ represents the series in the Fibonacci number. The recursive process will integrate the call of two Fibonacci() function.
- Terminal case for Fibonacci problem is when $\boldsymbol{N}$ equal to 0 or $\mathbf{N}$ equal to 1 . The computed result is returned to the called function.
- Fibonacci() function

```
// Program 3.4
int Fibonacci (int N)
{ if (N<=0)
        return 0;
    else if (N==1)
        return 1;
    else
    return Fibonacci(N-1) + Fibonacci (N-2);
}
```

10

- Figure 3.6 shows the recursive trace for Fibonacci() function. Each step calling and returning is labeled from L1 to L10.


Figure 3.6 Fibonacci(3)execution steps

### 3.7 Infinite Recursive

- It is a state whereby the recursive functions run indefinitely and must be avoided in a programming discipline.
- Characteristics of a recursive function to avoid infinite recursion:
- must have at least 1 base case (to terminate the recursive sequence)
- each recursive call must get closer to a base case
- Example of infinite recursive is shown in Program 3.5.

- The correct recursive function is shown in Program 3.6.

| 1 | // Program 3.6 |  |
| :---: | :---: | :---: |
| 2 | void printIntegers(int n ); |  |
| 3 |  |  |
| 4 | main() |  |
| 5 | \{ int number; |  |
| 6 | cout<<"\nEnter an integer value :"; |  |
| 7 | cin >> number; |  |
| 8 | printintegers(number); |  |
| 9 | \} |  |
| 10 |  |  |
| 11 | void printIntegers(int nom) condition statement |  |
| 12 | $\{$ if (nom $>=1$ ) $\}$ to stop the recursive |  |
| 13 | \{ cout <<"\Value : " < n nom; $\quad$ call and changes the |  |
| 14 | printintegers (nom-2); terminal case during |  |
| 15 | \} | recursive call |
| 16 |  |  |

