
	

	

MODULE 2

 ABSTRACT DATA
 TYPES AND C++

DATA STRUCTURE AND ALGORITHMS

FACULTY OF COMPUTING
UNIVERSITI TEKNOLOGI MALAYSIA

	

	

	

MODULE 2: ABSTRACT DATA TYPES AND C++

OBJECTIVES FOR STUDENTS

1. To introduce Abstract Data Type concept.

2. To review C++ programming on the following topics.

• Declaring a class, data member and function member.
• Creating constructor and destructor.
• Create object as function parameter.
• Return object from a function.
• Array of class.
• File operations.
• Pointer to class.
• Define and implement a class within header files and implementation files.

3. Able to write and debug programs in C++.

KEY CONCEPT

1.0 ABSTRCT DATA TYPE

1.1. Abstraction

• Separates the purpose of a module from its implementation.
• Specifications for each module are written before implementation.
• Two types of abstraction: functional abstraction and data abstraction.
• Functional abstraction

o Separates the purpose of a module from its implementation

• Data abstraction
o Focuses on the operations of data, not on the implementation of the

operations.
o Asks you to think what you can do to a collection of data independently

of how you do it.
o Allows you to develop each data structure in relative isolation from the

rest of the solution.
o A natural extension of functional abstraction.

	

	

1.2. Information Hiding

• Hide details within a module.
• Ensure that no other module can tamper with these hidden details.
• Makes these details inaccessible from outside the module.

o Public view of a module: described by its specifications.
o Private view of a module: implementation details that the specifications

should not describe.

1.3. Abstract data type (ADT)
• An ADT is composed of

o A collection of data and A set of operations on that data
• Specifications of an ADT indicate

o What the ADT operations do, not how to implement them
• Implementation of an ADT

o Includes choosing a particular data structure
• We can use an ADT’s operations without knowing their implementations or

how data is stored, if you know the operations’ specifications

1.4. Example of Abstraction
• Abstraction of a book, shown in Figure 2.1.
• Data abstraction - Think of features or attributes for books

Example: book title, year published, the author, the publisher and the price.
• Functional abstraction – think of what we can do to the book.

Example – get information of the book, print the information, check the
price and check the publisher.

Figure 2.1 : Book Abstraction

	

	

1.5. Encapsulation combines an ADT’s data with its operations to form an object

• An object is an instance of a class
• A class defines a new data type
• A class contains data members and methods (member functions)

o By default, all members in a class are private, but you can also specify
them as public

• Encapsulation hides implementation details

2.0 C++ CLASS

2.1. Class definition

1
2
3
4
5
6
7
8

//Program 2.1
class clasName
{
public:
 list of data member declaration;
private:
 list of data member declaration;
}; // end class definition

public : members that are accessible by other modules
private : members that are hidden from other modules and can only be
accessed by function member of the same class.
• Class member usually composed of data members and function members.

2.2. Example : Declaration of class book.

1
2
3
4
5
6
7
8

//Program 2.2
class book
{
 private:
 // data members should be private
 float price;
 int year;
 char author[20], title[25];

	

	

9
10
11
12
13
14
15
16
17
18
19
20

 public:
 book(); // Default constructor
 book(char *bkTitle,double bkPrice);
 // Constructor with parmeter
 book(int = 2020);
 // Constructor with default argumen
 void getData();
 void print();
 float checkPrice()const;
 char * getAuthor();
 ~book() ; // destructor
}; // end book declaration

2.3. The book class consists of data members and function members. Function

members operate on a collection of data, which is stored in a structured way in
the computer memory.

2.4. Class methods/member functions
• Constructor – allocates memory for an object and can initialize new

instances of a class to particular values.
• Destructor – destroys an instance of a class when the object’s lifetime ends.
• C++ function

o const function – function that cannot alter data member of the class
o normal functions.

2.5. Constructor

• Create and initialize new instances of a class
• Invoked when you declare an instance of the class
• Have the same name as the class
• Have no return type, not even void
• A class can have several constructors

o A default constructor has no arguments
o The compiler will generate a default constructor if you do not define

any constructors

2.6. Constructor Properties
• A class can have more than one constructor declaration, which is known as

constructor overloading.
• Each constructor must be distinguished by the arguments as shown in

Program 2.3.

1
2

//Program 2.3
book();

	

	

3
4

book(char *title,double price);
book(int = 2020);

Types of constructor declared in Program 2.3 are as follows:

• Default constructor, constructor without argument: book();
• Constructor with argument:

 book(char * bkTitle,double bkPrice);
• Constructors with default argument: book(int = 2020);

2.7. Default Constructor Implementation

• The implementation of a method qualifies its name with the scope resolution
operator ::

• Usually is used to initialize data members to certain values
• Program 2.4 is the implementation of default constructor for book class.

1
2
3
4
5
6
7

//Program 2.4
book::book()
{ price = 15.00;
 strcpy (author,"Dayang Norhayati");
 strcpy (title, "Learn Data Structure");
 year = 2014;
} // end default constructor

• Instance declaration for the default constructor book:

 book myBook;
• Once the statement book myBook; is executed, the constructor in Program

2.4 will be invoked and the attributes for myBook will be assigned as follows:

Price : 15.00
Author : Dayang Norhayati
Title : Learn Data Structure
Year : 2014

2.8. Constructor with Argument Implementation

1
2
3
4
5
6

//Program 2.5
// Constructor with argument implementation
book::book (char *bkTitle,double bkPrice)
{ strcpy (title, bkTitle);
 price = bkPrice;
}

	

	

• The implementation of book constructor with two arguments is shown in
Program 2.5.

• Instance declaration based on the constructor in Program 2.5:
 book myBook(“Brain Power”,25.00);

• The attributes for myBook will be assigned as follows:
Price is set to 25.00
Title : Brain Power

• No values have been assigned for Title and Year

2.9. Constructor with Default Argument Implementation

1
2
3
4
5
6
7
8
9
10

//Program 2.6
// Constructor with argument implementation // for
book(int = 2020);

book::book(int year);
// Constructor with default argument
{ price = 10.00;
 strcpy (author,"NorBahiah");
 strcpy (title, "Learn C++");
} // end default constructor

• 2 methods to declare instance of a class:
 book myBook;// set year to default value, 2020
 book yourBook(2016); // set year to 2016

• However, when implementing overload constructor that consists of

constructor with default argument, and default constructor as given in
Program 2.7, you must avoid ambiguity error.

1
2
3
4

//Program 2.7
book(); //default constructor
book(int = 2020); // constructor with default
 // argument

• The declaration : book myBook; gives ambiguity error as shown in Figure

2.2.
• The compiler cannot distinguish whether to invoke the default constructor or

the constructor with default argument.

 Figure
2.2 : Ambiguity error

	

	

• Solution to avoid ambiguity error :
o Discard one of the constructor or
o Change the constructor with default argument from:

book(int = 2000);
to
book(float p, int = 2000);

o Program 2.8 shows valid overload constructor with different number
and types of argument

1
2
3
4

//Program 2.8
book();
book(char *title,double price);
book(float p, int = 2020);

• Various instance declaration for the overload constructors in Program 2.8

are as follows:
book aBook;
book myBook(“Fun Learning”, 55.00);
book labBook(25.00, 2014);
book noteBook(25.00);

2.10. Destructor

• Destructor destroys an instance of an object when the object’s lifetime ends
• Each class can only has one destructor

o However, destructor can be omitted.
o The compiler will generate a destructor if it is not defined.

• Destructor example:
o ~book();

• Destructor implementation

1
2
3
4

//Program 2.9
book::~book()
{ cout << "\nDestroy the book with title" << title;
}

2.11. Member Function Implementation
• Function implementation outside the class declaration is as follows:

1
2
3
4
5
6
7

//Program 2.10
void book::getData()
{ cout << "\nEnter author's name : ";
 cin >> author;
 cout << "\nEnter book title : ";
 cin >> title;
}

	

	

• Const member function – the function cannot alter value as shown in
Program 2.11.

1
2
3
4
5

//Program 2.11
float book::checkPrice()const
{
 return price;
}

• Invoking the member function:

o Member function can be invoked from main() or nonmember function
o The function must be invoked using the instance of the class.
o Program 2.12 shows how member function getData()and checkPrice(

)are invoked by myBook instance.

1
2
3
4
5

//Program 2.12
book myBook; //declare book instance
myBook.getData();
cout << "\nThe book price is: RM:" <<
myBook.checkPrice();

• Invoke from member function of the same class – the function can be

invoked directly without using instance.
• The example in Program 2.13 invoke getAuthor()and checkPrice()from

member function print().

1
2
3
4
5
6
7

//Program 2.13
void book::print()
{ cout << "\nAuthor's name : " << getAuthor();
 cout << "\nBook title : " << title;
 cout << "\nBook price : " << checkPrice();
 cout << "\nBook published : " << year;
}

3.0 CLASS AS FUNCTION PARAMETER

• Class objects can be passed to another function as parameters
• 3 methods of passing class as parameter to function

o Pass by value
o Pass by reference
o Pass by const reference

• Pass by value - Any change that the function makes to the object is not
reflected in the corresponding actual argument in the calling function.

	

	

• Example of object as parameter and send using pass by value is shown in
Program 2.14a. To allow the non-member function to access the private
values declare the function as friend.

• The declaration: friend void changePrice(book); is a friend function that
receive object book as parameter.

• The function can access class member, including private data member
from book instance.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

//Program 2.14a
// Class as function parameter
// pass by value
class book
{ private:
 // data members should be private
 float price;
 int year;
 char author[20], title[25];
 public:
 book(); // Default constructor
 :
 friend void changePrice(book);
 // non-member function that receives
 // class as parameter
}; // end book declaration

• The implementation of function changePrice(book)ia as shown in Program

2.14b.
• This function give discount to any book published on 2010 or earlier.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

//Program 2.14b
// function that receive object book
void changePrice(book newBook)
{ if (newBook.year <=2010)
 { cout << "\nThe book has discount.";
 newBook.price -= 50.00/100 * newBook.price;
 cout << "\nThe new price after 50% discount
 is RM" << newBook.price;
 newBook.print();
 //the price has been changed
 }
 else
 cout << "\nThe book has no discount.";
}

	

	

• Program 2.14c shows the example to call changePrice()function in Program

2.14b from main()
• Object myBook that is sent to function changePrice()only change the value

in the function. However, the initial value of myBook is still retain when the
program return to main().

1
2
3
4
5
6
7
8
9
10
11
12

//Program 2.14c
//call function changePrice()from main()
main ()
{ book myBook; //invoke default constructor
 :
 changePrice(myBook);
 // pass objek myBook by value
 cout << "\n View the book information.";
 myBook.print();
 // the initial value does not change
}

• Pass by reference - Any changes that the function makes to the object will
change the corresponding actual argument in the calling function.

• Function prototype for function that receive a reference object as
parameter need to use operator & as shown below:

functionType functionName(className & classObject)
{
 // body of the function
}

• Example of pass by reference by using operator &:
friend void changePrice(book &);

• Need to use friend function that receive object as parameter, in order to
allow the function to access private member of class book.

• Program 2.15 show an example of pass by reference :

1
2
3
4
5
6
7
8

//Program 2.15
// Class as function parameter
// pass by reference
class book
{ private:
 // data members should be private
 float price;

	

	

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
32

 int year;
 char author[20], title[25];
 public:
 book(); // Default constructor
 :
 friend void changePrice(book &);
}; // end book declaration

// receive object book and use operator &
void changePrice(book& newBook)
{ :
 :
}

// Call from main()
main ()
{ book myBook;
 // pass object myBook by reference
 :
 changePrice(myBook);
 myBook.print();
 // the attribute price has been changed
}

• const parameter - Reference parameter can be declared as const if we

don’t want any changes being done to the data in the function.
• Function prototype for function that receive a reference object as

parameter is as follows:

functionType functionName(const className& classObject)
{
 // body of the function
}

• Example program is in Program 2.16.

1
2
3
4
5
6
7
8

//Program 2.16
// operator const and & is used
void changePrice(const book& newBook)
{ if (newBook.year <=2005)
 { cout << "\nThe book has discount.";
 newBook.price -= 50.00/100 * newBook.price;
 // error, when try to change price value

	

	

9
10
11
12
13

 cout << "\nThe new price after 50%
 discount is RM" << newBook.price;
 newBook.print();
 }
}

• In this example, the variable price for object newBook is trying to be

changed. Error will occur since parameter const cannot be modified.

4.0 CLASS AS RETURN VALUE FROM FUNCTION

4.1. Function normally return value such as int, float, char etc.

4.2. For example, the following function : float checkPrice();

returns float value from the function.

4.3. However, function can also return class.
• Syntax for declaring function that return a class object

//Program 2.17
className functionName(parameter list)
{
 // function body
}

• Syntax to call function that return a class

objectName = functionName();

where,
o objectName, an object from the same class with the type of class return

from the function. This object will be assigned with the value returned
from function

o functionName(): function that return class

• Example of a function that return a class object, is shown in Program 2.18

1
2
3
4
5
6
7

//Program 2.18
book buyBook()
{ cout << "\Enter buyBook().";
 book aBook(200.00,2010);
 cout << "\Leaving buyBook().";
 return aBook;
}

	

	

• Statement that calls function that returns a class is shown in Program 2.19.

1
2
3
4
5
6
7
8
9
10

//Program 2.19
main ()
{ book myBook;
 :
 book newBook;
 newBook = buyBook();
 //assign the return value to newBook
 newBook.print();
 return 0;
}

5.0 ARRAY OF CLASS

• A group of objects from the same class can be declared as array of a

class
• Example:

o Array of class students registered in Data Structure class
o Array of class lecturer teaching at FC
o Array of class subjects offered in Semester I.

• Every element in the array of class has its own data member and function
member.

• Syntax to declare array of objects :
className arrayName[arraySize];

• Example of array of class book

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1

//Program 2.20
main ()
{ // declare array of book with size 5
 book myBook[5];
 // Each element of the array has title
 // author, price, and year.

 // To access only certain element in the
 // array, will access based on array index
 // Accessing book at index 0

 myBook[0].getData();
 myBook[0].print();

 // using loop to access the whole elements
 // in the array
 for (int i =0; i<5; i++)
 { myBook[i].getData();
 myBook[i].print();
 }
}

	

	

5
1
6
1
7
1
8
1
9
2
0

• 2 methods to call member function for book array in Program 2.20
• By using array subscript

o Subscript can be used to access element of the array at certain
index in the array.

o Example:
cout << “ Please enter the index of the array. “;

 cin >> n ;
 myBook[n].getData();
 myBook[n].print();

• By using loop in order to access a group of elemts in the array

// read and print information for 5 books
for (int i =0; i<5; i++)
{ myBook[i].getData();
 myBook[i].print();
}

Pass array of object to function:
• Array can be passed as parameter to function. The whole elements in

the array can be passed to other function or simply pass only one
element from the array. Program 2.21a is an example of passing the
whole array to function.

1
2
3
4
5
6
7
8
9
1
0
1

//Program 2.21a
void checkInfo(book x[])
{ int found = 0;
 char *authorName;
 cout << “\nEnter the author’s name: “;
 cin >> authorName;
 for (int n = 0; n < 5; n ++)
 if (strcmp(authorName,
 x[n].getAuthor()) == 0)
 { cout << “\nBook Title written by “ <<
 authorName << “ “ << x[n].getTitle();
 found = 1;

	

	

1
1
2
1
3
1
4
1
5
1
6
1
7
1
8

 break;
 }
 if (found == 0)
 cout << "\nSorry, we cannot find the
 book written by the author.";
}

• The header function checkInfo(book x[]); in Program 2.21a receive an
array of object book. This function requires the user to enter the name of
the author. The function will search from the book array for the title of the
book based on the author’s name and display the book that the author
wrote.

• Program 2.21b shows the example to call function checkInfo() from
main(). The statement checkInfo(myBook); in line 8 call function
checkInfo(), and pass address of objects from book array .

1
2
3
4
5
6
7
8
9
1
0

//Program 2.21b
main ()
{ book myBook[5];
 for (int i =0; i<5; i++)
 { myBook[i].getData();
 myBook[i].print();
 }
 checkInfo(myBook);
 // pass address of myBook to checkInfo()
}

6.0 POINTER TO OBJECT

6.1. Pointer to Object

• Pointer is used to store address of a variable.
• For ADT, pointer can also store address of an object.
• Example of pointer declaration:

	

	

book textBook; // create instance of book
book *bookPtr ; // pointer declaration
bookPtr = &textBook; // assign address to pointer

• The codes in the example above declare pointer bookPtr that store address
of textBook which is an instance book .

• Two methods to access class member through pointer variable bookPtr :
1) (*bookPtr).print()

or
2) bookPtr ->print()

• Program 2.22 shows example of pointer to object implementation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

//Program 2.22
// pointer to object
main()
{ book myBook(200.00, 2000);
 book yourBook(50.00, 2010);
 cout << "\nAddress of the object";
 cout << "\nAddress myBook: " << &myBook
 << "\nAddress yourBook :"<< &yourBook;
 book* ptr;
 cout << "\n\nPointer value ";
 ptr = &yourBook;
 cout <<"\nPointer value for yourBook "<<ptr;
 ptr = &myBook;
 cout <<"\nPointer value for myBook "
 << ptr << "\n";
 ptr ->print();
}

6.2. Output for Program 2.22

	

	

• Memory for a pointer variable, can also be allocated dynamically using
operator new and destroy the memory using operator delete

• Program 2.23 shows the example of using new and delete operator

1
2
3
4
5
6
7
8
9
10
11
12
13

//Program 2.23
// pointer to object
// new and delete pointer

main()
{
 book *ptr = new book(200, 2000);
 ptr -> print();
 delete(ptr);

 ptr = new book(50.00, 2010);
 ptr ->print();
 delete(ptr);
}

6.3. Output for Program 2.23

7.0 BASIC C++ FILE OPERATIONS

7.1 Introduction

• Programs need data to be processed. The data can be key-in as input from the
user or can be initialized in the program.

• However, usually programs need large data. The data can be stored in a file
and saved in external storage. Data stored in a file can be accessed and
modify by a program easily at any time.

	

	

7.2 Basic steps to process file in C++

1. Create the input file, usually as .txt file.
2. Include header file fstream.h in the program in order to use the file libraries.

 # include <fstream.h>

3. Declare the object file as file input or output.
 ifstream bookFiles; // input file declaration

 ofstream outFile; // output file declaration

4. Open a file before any file operations can be processed. When a file is
opened, we need to test whether the file has been opened successfully.
 bookFiles.open("bookData.txt", ios::in);
 if (!bookFiles)
 { cerr << "ERROR!!!!Cannot open the file.";
 return 0;
 }

5. Implement file operations such as:
Read from file: bookFiles >> year >> price;
Getline() : bookFiles.getline(title, 25, '\n');
Print to file: outFile << year << price;

6. Close file : bookFiles.close();

7.3 Creating Data File bookData.txt. The file consists of the year, price, title and author
of 4 books.

2010 20.00 Learn Data Structure
Nor Bahiah Ahmad
2009 30.00 Advanced C++
Zalmiyah Zakaria
2005 45.00 Learn Java in 1 Day
Dayang Norhayati
2010 20.00 Data Structure and Algorithm
Aida Ali

7.4 Program 2.24 is an example program that open and access bookData.txt file.

1
2
3
4
5
6

//Program 2.24
// File operation
#include <string.h>
#include <iostream.h>
#include <fstream> // include header file

	

	

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

fstream bookFiles; // declare object file
class book
{
 private:
 // data members should be private
 float price;
 int year;
 char author[20], title[25];
 public:
 void getData();
 void print();
}; // end book declaration

// function that read data from file
void book::getData()
{ bookFiles >> year >> price;
 bookFiles.getline(title, 25, '\n');
 bookFiles.getline(author, 20, '\n');
}

void book::print()
{ cout << "\nAuthor's name : " << author;
 cout << "\nBook title : " << title;
 cout << "\nBook price : " << price;
 cout << "\nBook published : " << year;
}

main ()
{ // open a file and test for error
 bookFiles.open("bookData.txt", ios::in);
 if (!bookFiles)
 { cerr << "ERROR!!!!Cannot open the file.";
 return 0;
 }

 book myBook[4]; //invoke default constructor

 for (int j=0;j<3;j++)
 myBook[j].getData(); // read from file
 for (int j=0;j<3;j++)
 myBook[j].print();

 bookFiles.close(); // close file
}

	

	

8.0 HEADER FILE AND IMPLEMENTATION FILE

8.1. To implement ADT C++, we need to separate C++ program into header files and

implementation files. This way, programmers can use implementation file without
knowing how the member functions are implemented.

• Each class definition is placed in a header file
▫ Classname.h

• The implementation of a class’s methods are placed in an implementation file
▫ Classname.cpp

8.2. For the book class example, we must separate the file into header file, named

book.h, and the implementation file that contain the class member function
source code, named book.cpp and another implementation file that contain
source codes for main() program named, bookMain.cpp.

8.3. The header file – book.h is shown in Program 2.25a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//Program 2.25a
// Header file

/** @file book.h */
class book
{
 private:
 // data members should be private
 float price;
 int year;
 char author[20], title[25];
 public:
 book(); //default constructor
 book(char *bkTitle,double bkPrice);
 // Constructor with parmeter
 void print();
 float checkPrice()const;
 char * getAuthor();
}; // end book declaration

8.4. The implementation file for member function source codes - book.cpp

1
2
3
4
5

//Program 2.25b
// Implementation file
/** @file book.cpp */

#include <string.h>

	

	

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <iostream.h>
#include <conio.h>
#include "book.h" // must include header file

book::book()
 { price = 10.00;
 strcpy (author,"Dayang Norhayati");
 strcpy (title, "Learn Data Structure");
 year = 2010;
} // end default constructor
book::book (char *bkTitle, double bkPrice)
{ strcpy (title, bkTitle);
 price = bkPrice;
 year = 2009;
 strcpy (author,"NorBahiah");
}
void book::print()
{ cout << "\nAuthor's name :" << getAuthor();
 cout << "\nBook title : " << title;
 cout << "\nBook price : " << checkPrice();
 cout << "\nBook published : " << year;
}
float book::checkPrice()const
{ return price; }
char* book::getAuthor()
{ return author; }

8.5. Client File - file that use the class book, such as main() - bookMain.cpp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

//Program 2.25c
// Client file

/* bookMain.cpp */
#include <string.h>
#include <iostream.h>
#include <conio.h>
#include "book.h" // must include header file

main ()
{ book myBook; //invoke default constructor
 myBook.print();
 getch();
 book storyBook("UPIN & IPIN Adventure",50.00);
 storyBook.print();
 cout << "\n\nThe book price is: RM: " <<
 storyBook.checkPrice();
 cout << "\nThe book author is: " <<
 storyBook.getAuthor();
 return 0;
}

	

	

8.6. File Compilation and Execution
Compile all .cpp files separately in order to create object files. Link all files to
create .exe files. Figure 2.3 shows the compilation and link of the .cpp files.

 Figure 2.3 File compilation and executions

8.7. Create File Project in Borland C++ Environment

Steps to create project file:
1. Compile .cpp files separately.
2. Crete project file by choose the menu

<File> <New><Project>
3. Set the project setting as follows:

• Project name : ProjectName.prj or ProjectName.ide
• Target name: will create automatically
• Target type: Application [.exe]
• Platform : Win32
• Target model : Console
• Frameworks/Control: Uncheck all the check boxes.
• Libraries: Static
• Then click OK.

4. Choose the implementation file for the projects:
o Right click the mouse button on the ProjectName.exe .
o Delete all files in the list.
o Choose <add node> and choose book.cpp and
o Click <Open> button.
o Choose <add node> and choose book.Main and
o Click <Open> button.

5. Link all object files by clicking ProjectName.exe and
• Choose menu <Project> <Compile>
• Then choose <Project><Make all>.
• If there is a linker error, debug the error and link the files again.
• The execution file will be generated when all errors have been debug.

6. Run the execution file by choosing <Debug> and <Run>.

