
Array of Primitives

Associate Prof. Dr. Norazah Yusof

Object Oriented
Programming – SCJ2153

Introduction to Array

• Array is an object and is used to store a list of data of
similar types.

• Array element can be of type:

– primitive data types (such as int, double, float or
char) or

– objects (of type class).

• The size of an array (or the array length) must be
declared before it can be used.

• Once an array is created, its size becomes permanent
and can be obtained through array constant, length.

• The JVM stores the array in an area of memory called
heap

Declare and create an array

3

• Before an array can be used, it must first be declared

• Declare and create array is similar to declare and create

any other type of object.

• Declare and create array can be done in two steps:

- Step 1: declare an array reference

- Step 2: create an array

• Declare and create array can be done in one step.

• Declare, create, and initialize array can be done using
the shorthand notation

Declare and create an array in two
steps

Format of Step 1: Syntax to declare an array reference

 datatype[] arrayRefVar;

 or

 datatype arrayRefVar[]; // This style is allowed,
 // but not preferred

 Format of Step 2: Syntax to create an array

 arrayRefVar = new datatype[arraySize];

Example

 double[] myMarks;

 myMarks = new double[10];

4

Declare and create an array in one
step

• Syntax to declare and create the array:

 datatype[] arrayRefVar = new datatype[arraySize];

 or

 datatype arrayRefVar[] = new datatype[arraySize];

• Example

 double[] myMarks = new double[5];

 or

 double myMarks[] = new double[5];

5

Array’s Subscript/Index

0.0

0.0

0.0

0.0

0.0

double[] myMarks = new double[5];

myMarks
myMarks[0]

myMarks[1]

myMarks[2]

myMarks[3]

myMarks[4]

 The fourth array

element at index 3

• Array’s elements numbered beginning with zero

• Can legally use any subscript from 0 through
myMarks.length-1

• Subscript/index:

- is an integer contained within square brackets

- indicates one of array’s variables or elements

The Length of an Array

• Once an array is created, its size is fixed. It cannot be
changed.

• The size can be determined by the constant,
length with the following syntax:

arrayRefVar.length

• For example,
System.out.println(myMarks.length);

returns 5

7

Accessing Array Elements

• The array elements are accessed through the index,
known as indexed variable

• Syntax:

 arrayRefVar[index];

• An indexed variable can be used in the same way as a
regular variable.

• For example, the value of the array element may be assigned
as follows:
 myMarks[0] = 5.6;

 myMarks[1] = myMarks[0] – 1.1;

 Scanner inp = new Scanner(System.in);

 myMarks[2] = inp.nextDouble();

 8

Accessing Array Elements

• The array elements can be output using the println
method.

 System.out.println (myMarks[0]);

 System.out.println (myMarks[1]);

 System.out.println (myMarks[2]);

9

Declaring, creating, initializing
Using the Shorthand Notation

• The syntax to declare and create the array:

 datatype[] arrayRefVar = {arrylist1, arrylist2,…};

• Example

 double[] yourMarks = {5.6, 4.5, 3.3, 13.2, 14.0};

10

Array’s Subscript/Index

5.6

4.5

3.3

13.2

14.0

double[] yourMarks = new double[5];

yourMarks
yourMarks[0]

yourMarks[1]

yourMarks[2]

yourMarks[3]

yourMarks[4]

• The size of the array name yourMarks is 5.

• The array’s elements numbered beginning from 0 to 4.

• The content of the array will automatically filled to each

element.

Using for loop

• Perform loops that vary loop control variable

• Start at 0

• End at one less than size of array

• Using the length field to control the number of
elements in array.

1

2

3

for(int i = 0; i < myMarks.length; i++)

myMarks[i] += 3;

Using enhanced for loop

• Enhanced for loop (also known as for each loop) for
accessing each of the array element.

• The syntax:

• Example:

1

2

3

for (dataType elementVariable: array) {

 // statement

}

1

2

3

for(double val : myMarks)

 System.out.println(val);

enhanced for loop (for each loop)

• Both loops are placed side by side

14

enhanced for loop (cont.)

• One drawback of enhanced-for loop is that
cannot be used if we have to add an index
variable in the program code and need to
increment it each time through the loop.

15

