

Chap 7: Seasonal ARIMA Models

Ani Shabri

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia <u>ani@utm.my</u>

Jun 8, 2014

ocw.utm.my

Innovative.Entrepreneurial.Global

Chap 7: Seasonal ARIMA models

Outline:

- Introduction to SARIMA models
- Seasonality and ARIMA models
- Box-Jenkins methodology
- Stationary
- Model identification222
- Parameter estimation
- Diagnostic checking
- Forecasting

2

Introduction to SARIMA models

- Common in economic, agricultural and geophysical time series have cycle components within a specific time period.
- The smallest time period for this repetitive phenomenon is called a seasonal period (s). For example,
 - unemployment temperatures have a 24-hour cycle, s = 24.
 - hourly temperature have a 12-month cycle, s = 12.
 - monthly temperature have a 12-month cycle, s = 12.
 - the quarterly ice cream sales have a 4-quarterly cycle, s = 4.
- It may be useful to use a s-fold difference operator $(1-B^s)$ with s = 4 to remove the cycle component from quarterly data, s = 12 to remove annual fluctuations from monthly data.

Seasonality and ARIMA models

- The ARIMA models can be extended to handle seasonal components of a data series.
- The multiplicative seasonal autoregressive moving average model, SARIMA (p, d, q)(P, D, Q)_s is given by

 $\phi(B)\Phi_P(B^s)(1-B)^d(1-B^s)^D y_t = \delta + \theta(B)\Theta_Q(B^s)\varepsilon_t$

where $\{\varepsilon_t\}$ is Gaussian white noise. $\phi(B)$ is ordinary autoregressive and $\theta(B)$ moving average components; $\Theta_Q(B^s)$ and $\Phi_p(B^s)$ are seasonal autoregressive and moving average components, respectively, and $(1-B)^d$ are $(1\pm he^s)$ ordinary and seasonal difference component of order d and D.

Box-Jenkins methodology

- ARIMA models for seasonal time series (SARIMA) are built the SAME ITERATIVE PROCEDURES used for non-seasonal data.
- The Box –Jenkins approach uses an iterative model-building strategy that consist of
 - Stationary
 - Selecting an initial model (model identification)
 - Estimating the model coefficients (parameter estimation)
 - Analyzing the residuals (model checking)
 - Forecasting

Stationary

• The General Formula to transform not stationary to stationary series is given by

OPENCOURSEWARE

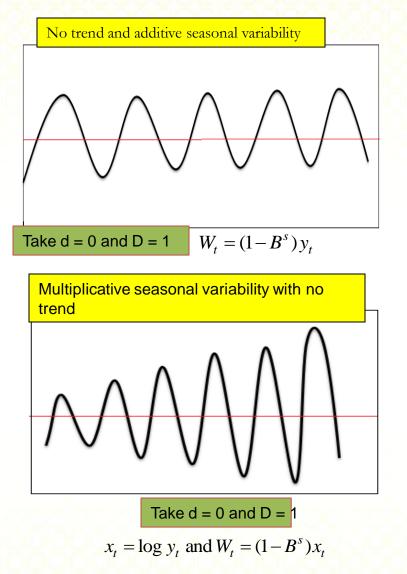
$$W_t = (1-B)^d (1-B^s)^D y_t$$

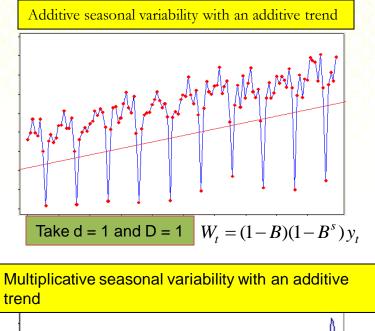
• With seasonal data which is not stationary, it is appropriate to take seasonal differences and check the time plot, ACF and PACF. We take a seasonal difference

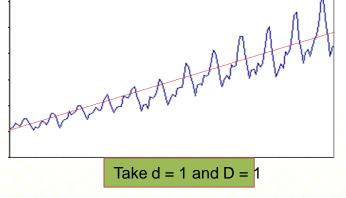
$$W_t = y_t - y_{t-s} = (1 - B^s) y_t$$

• If the seasonally differenced data appears to be nonstationary (the plots are not shown), so we difference the data again.

Seasonally stationary process





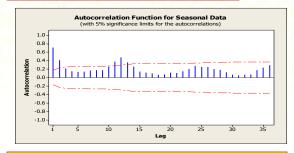


 $x_t = \log y_t$ and $W_t = (1 - B)(1 - B^s)x_t$

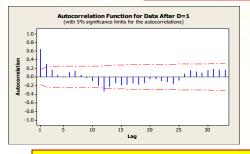
ACF for non-stationary seasonal data

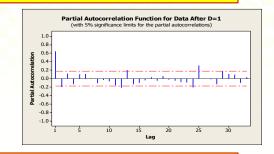
ACF die down slowly at multiples of 12

THERE AND MADE AND



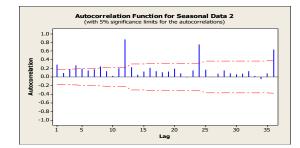
ACF die down slowly before 12 and at multiples of 12



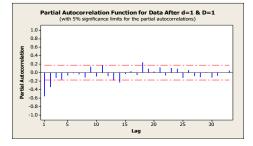


ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1)

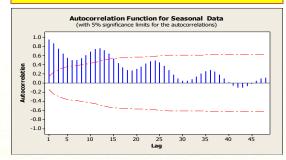
ACF and PACF for first seasonal differencing (D=1)



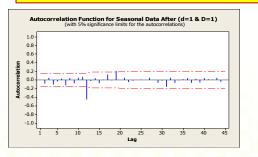
Autocorrelation Function for Seasonal Data After d=1 & D=1 (with 5% significance limits for the autocorrelations 0.8 0.6 0. 0.3 0.0 -0.2 Autoc -0.4 -0.6 -0.8 -1.0 15 20 25 30 Lag

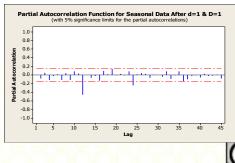


ACF die down slowly and has a cycle pattern at multiples of 12



ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1)





Innovative.Entrepreneurial.Global

Model identification

In a purely seasonal ARIMA model (no non-seasonal components), the ACF and PACF have similar forms as for the previous non-seasonal ARIMA models. The difference is now only lags h=s, 2s, 3s,... are examined. The remainder of the lags have ACF and PACF equal to 0.

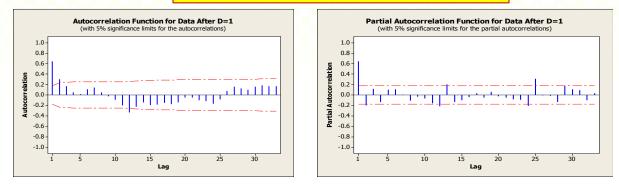
Examples of Identification

	SAR(P) _s	SMA(Q) _s	SARMA(P,Q) _s
ACF	Tails off to 0 at lags ks for k=1,2,	Cuts off to 0 after lag Qs	Tails off to 0 after lag Qs
PACF	Cuts off to 0 after lag Ps	Tails off to 0 at lags ks for k=1,2,	Tails off to 0 after lag Ps

Note: The values of the ACF and PACF are zero at lags other than s, 2s, 3s,

Model identification for Example 1

ACF and PACF for first seasonal differencing (D=1)



Tentative SARIMA MODELS

ARIMA(0,0,2)(0,1,1)₁₂

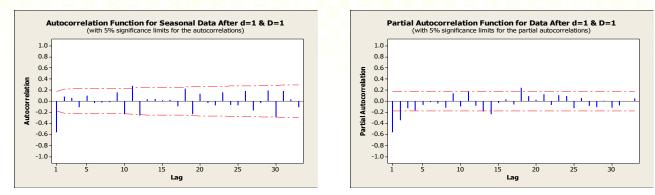
- ACF shows a spike at lag 1, 2 and 12 but no other significant spikes.
- The PACF tails off

ARIMA(2,0,0)(2,1,0)₁₂

- ACF tails off.
- The PACF spike at lag 1, 2,12, 13, 24 and 25 but no other significant spikes.

Model identification for Example 2

ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1)



Tentative SARIMA MODELS

ARIMA(0,1,1)(0,1,1)₁₂

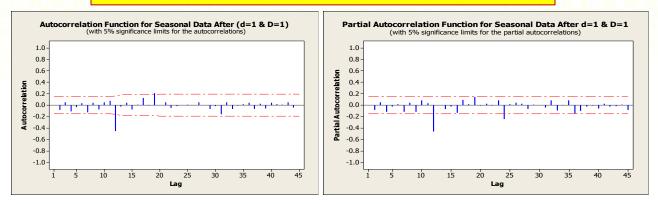
- ACF shows a spike at lag 1, 11 and 12 but no other significant spikes.
- ACF tails off.

ARIMA(2,1,0)(1,1,0)₁₂

- ACF tails off.
- The PACF spike at lag 1, 2, 14 and 18 but no other significant spikes.

Model identification for Example 3

ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1)



Tentative SARIMA MODELS

ARIMA(0,1,0)(0,1,1)₁₂

- ACF shows a spike at lag 12 but no other significant spikes.
- The PACF dying down quickly at seasonal level.

ARIMA(0,1,0)(2,1,0)₁₂

- ACF tails off.
- The PACF spike at lag 12 and 24 but no other significant spikes.

Parameter estimation

- Once a tentative model has been identified, the estimates for constant and the coefficients of the parameter SARIMA models must be obtained.
- The model should be parsimonious (simplest form)
- All parameters and constant estimated should be significantly different from zero. Significance of parameters is tested using standard t-test

 $t_{stat} = \frac{\text{point estimate of parameter}}{\text{standard error of estimate}}$

• The parameters model are significances if

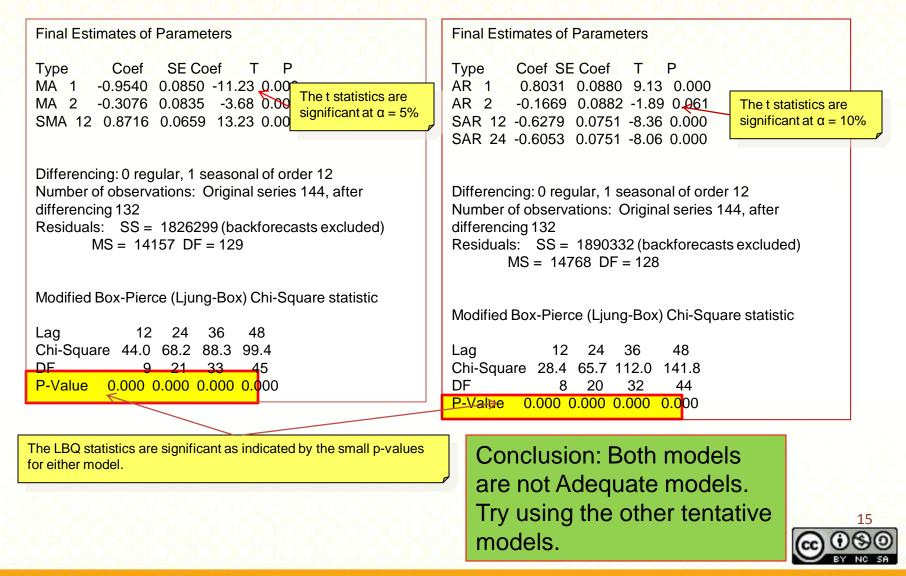
$$|t_{stat}| > 2$$
 for $\alpha = 0.05$.

Diagnostic checking

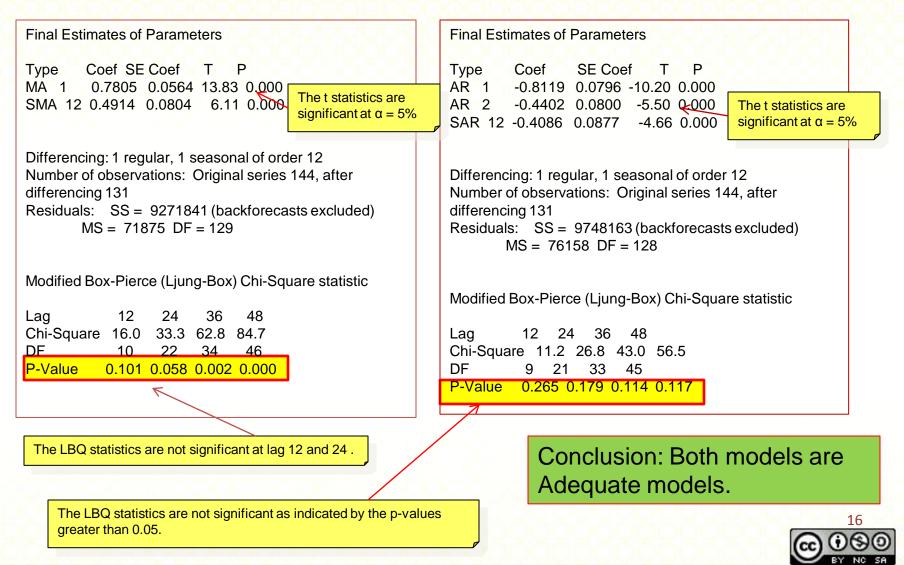
SARIMA(p,d,q)(P,D,Q)s models are adequate if the residuals nearly the properties white noise process, i.e. the errors

- constant on variances
- Independent
- normally distributed with zero means and variance σ^2

Diagnostics checking for Example 1

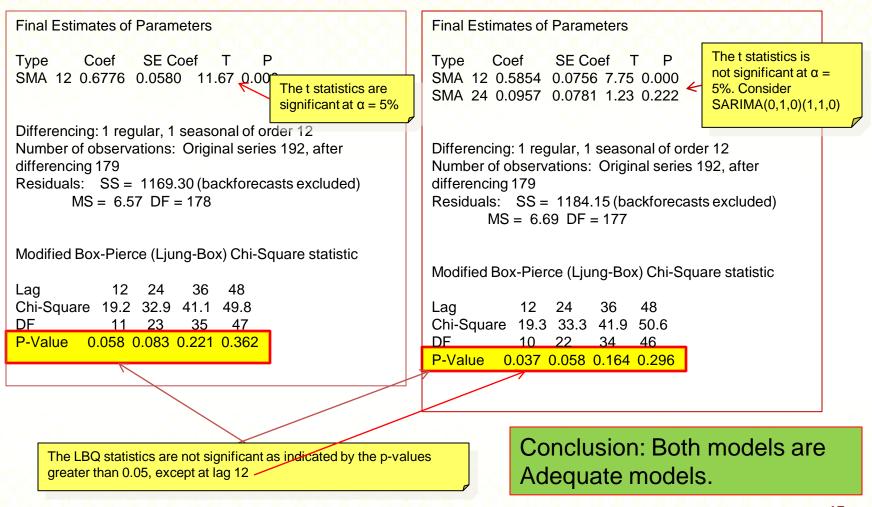


Diagnostics checking for Example 2



Innovative.Entrepreneurial.Global

Diagnostics checking for Example 3



Forecasting

- Once the fitted model has been selected, it can be used to generate forecasts for future time periods.
- The forecast values of h-period ahead for SARMA(p,d,q)(P,D,Q) model is given by

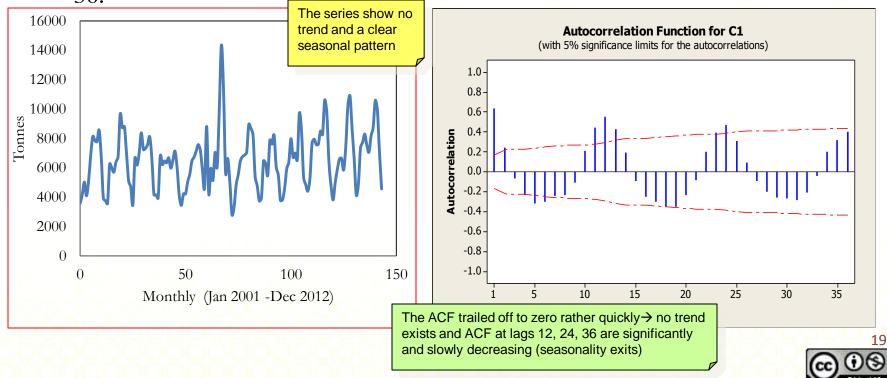
OPENCOURSEWARE

$$\phi(B)\Phi_P(B^s)(1-B)^d(1-B^s)^D\hat{y}_{t+h} = \delta + \theta(B)\Theta_Q(B^s)\varepsilon_t$$

where the forecast values of the SARIMA model may be found by replaced by their estimates when the actual values are not available.

Example

The monthly data of fishery landing in East Johor, covering the period from January 2001 to December 2012 with a total of 144 observations are used, as shown in Fig. 4. The time plot shows a clear seasonal pattern and the series fluctuate around a constant mean. The ACF cuts of to zero quickly and significance in the large values at the seasonal lags 12, 24 and 36.



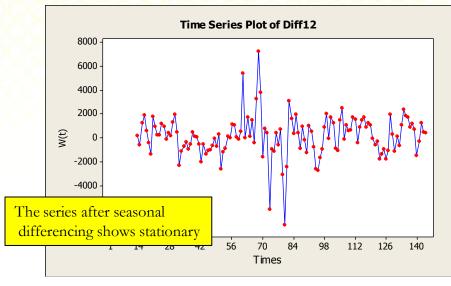
Seasonal differencing

• ACF at the seasonal lags 12, 24 and 36 were large and failed to die out quickly. This suggested the series is non-stationary seasonality data . Thus with non-stationary seasonal data, we have to difference the observations using

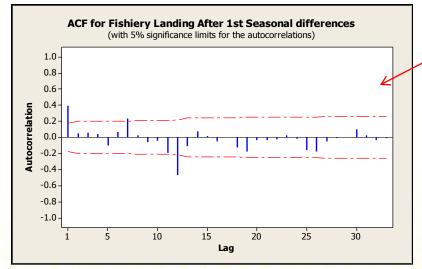
$$w_t = y_t - y_{t-s} = (1 - B^s) y_t$$

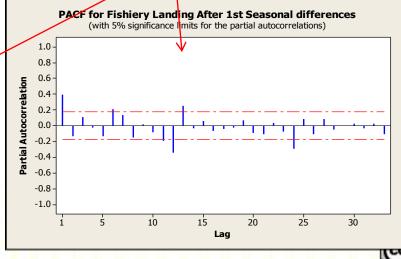
where s = 12

Seasonal differencing



Comparing the ACF with their error limits, the significant ACF are at lag 1, 7 and 12, , indicating MA(1) and SMA(1) behavior. The PACF appears to cut off after lag 1, 6, 12, 13, 24 indicating AR(1) and SAR(2) behavior \rightarrow we will try: SARIMA(1,0,0)(2,1,0)_{12} and SARIMA(0,0,1)(0,1,1)_{12}

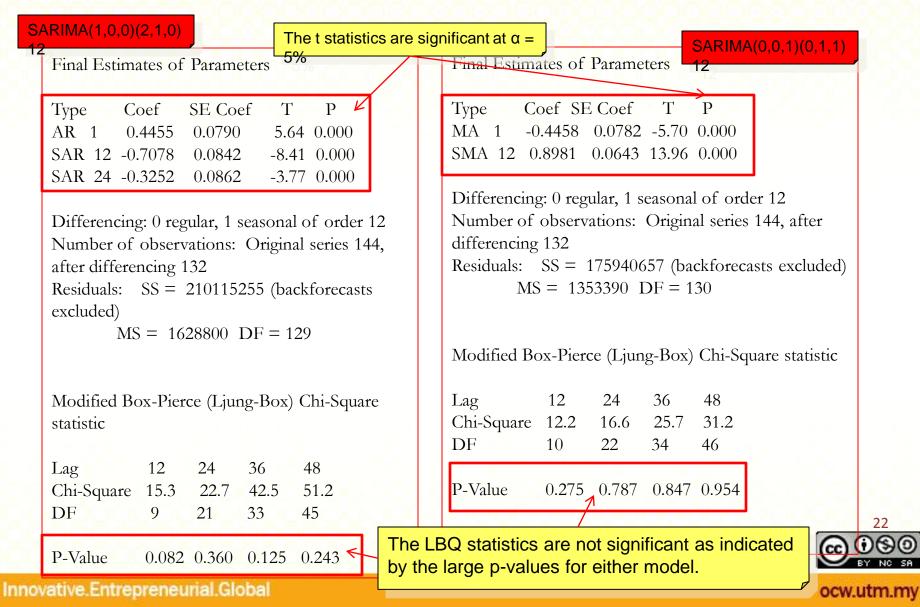




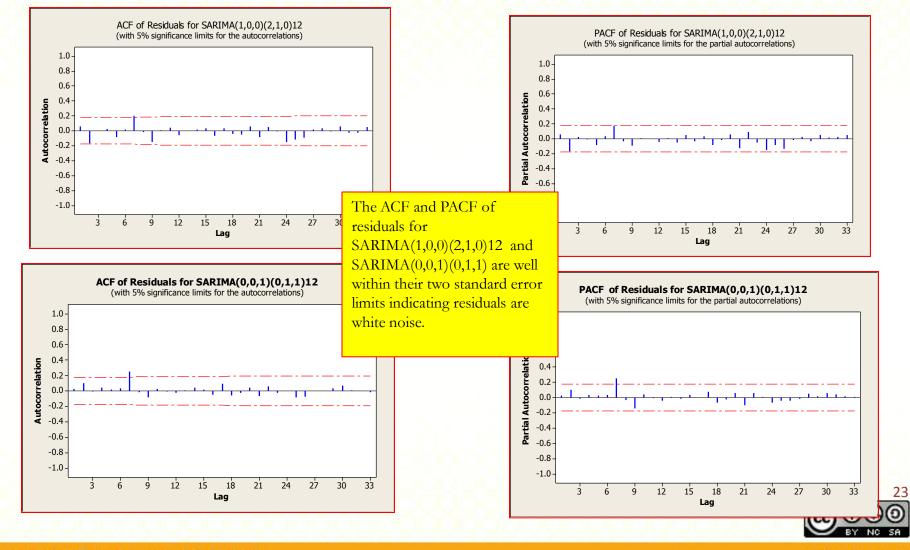
ocw.utm.my

21

ARIMA with MINITAB



ACF and PACF of residuals of SARIMA Model



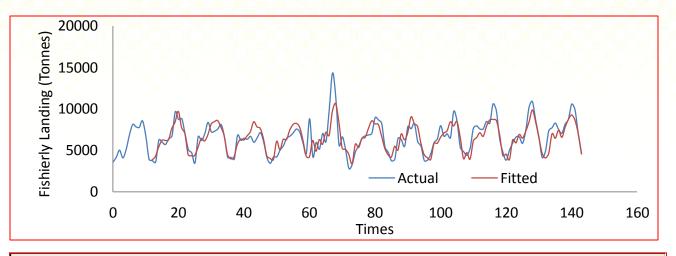
Innovative.Entrepreneurial.Global

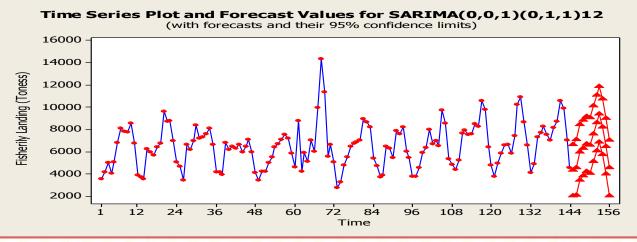
Model selection criteria

	t-test	Q-test	AIC	BIC
SARIMA(1,0,0)(2,1,0)12	\checkmark		14.235	14.297
SARIMA(0,0,1)(0,1,1)12	\checkmark		14.044	14.085

Judging these results, it appears that the estimated SARIMA(0,0,1)(0,1,1)12 model best fits the data.

Comparison of actual and forecasted Values for SARIMA(0,0,1)(0,1,1)12 model





Innovative.Entrepreneurial.Global