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Introduction to SARIMA models 

• Common in economic, agricultural and geophysical time series 
have cycle components within a specific time period.  

• The smallest time period for this repetitive phenomenon is called 
a seasonal period (s). For example, 

 - unemployment temperatures have a 24-hour cycle, s = 24. 

 - hourly temperature have a 12-month cycle, s = 12. 

 - monthly temperature have a 12-month cycle, s = 12. 

 - the quarterly ice cream sales have a 4-quarterly cycle, s = 4.  

• It may be useful to use a s-fold difference operator 

 with s = 4 to remove the cycle component from quarterly data,  

 s = 12 to remove annual fluctuations from monthly data. 

)1( sB
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Seasonality and ARIMA models 

• The ARIMA models can be extended to handle seasonal 

components of  a data series. 

• The multiplicative seasonal autoregressive moving average 

model, SARIMA (p, d, q)(P, D, Q)s is given by 

   

 

where {  }is Gaussian white noise.      is ordinary autoregressive 

and      moving average components;         and           are 

seasonal  autoregressive and moving average components, 

respectively,          and          are the ordinary and seasonal 

difference component of  order d and D.    

                                                                                                    

t
s

Qt
Dsds

P BByBBBB  )()()1()1)(()( 

t )(B

)(B )( s
P B)( s

Q B

dB)1( 
DsB )1( 

4 



Box-Jenkins methodology 

• ARIMA models for seasonal time series (SARIMA) are built the 

SAME ITERATIVE PROCEDURES used for non-seasonal 

data.  

• The Box –Jenkins approach uses an iterative model-building 

strategy that consist of   

- Stationary 

- Selecting an initial model (model identification) 

- Estimating the model coefficients (parameter estimation) 

- Analyzing the residuals (model checking) 

- Forecasting 
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Stationary 

• The General Formula to transform not stationary to 
stationary series is given by 

 

 

• With seasonal data which is not stationary, it is appropriate 
to take seasonal differences and check the time plot, ACF 
and PACF. We take a seasonal difference 

 

 

• If  the seasonally differenced data appears to be non-
stationary (the plots are not shown), so we difference the 
data again. 
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Seasonally stationary process 

No trend and additive seasonal variability 

t
s

t yBW )1( Take d = 0 and D = 1 

Additive seasonal variability with an additive trend 

Take d = 1 and D = 1 

t
s
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Take d = 1 and D = 1 

t
s

t yBBW )1)(1( 

Multiplicative seasonal variability with no 

trend 

Take d = 0 and D = 1 

t
s

ttt xBWyx )1( andlog 

Multiplicative seasonal variability with an additive 

trend 
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ACF for non-stationary seasonal data 
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ACF die down slowly at multiples of 12 ACF and PACF for first seasonal differencing (D=1) 

ACF die down slowly before 12 and at multiples of 12 ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1) 

ACF die down slowly and has a cycle pattern at 

multiples of 12 ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1) 
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Model identification 

In a purely seasonal ARIMA model (no non-seasonal components), the 
ACF and PACF have similar forms as for the previous non-seasonal 
ARIMA models. The difference is now only lags h=s, 2s, 3s,… are 
examined.  The remainder of  the lags have ACF and PACF equal to 0. 

 

Examples of  Identification 

 

 

 

 
 

Note: The values of  the ACF and PACF are zero at lags other than s, 2s, 3s, …. 

SAR(P)s SMA(Q)s SARMA(P,Q)s 

ACF 

Tails off  to 0 at 

lags ks for 

k=1,2,… 

Cuts off  to 0 after 

lag Qs 

Tails off  to 0 after lag 

Qs  

PACF 
Cuts off  to 0 after 

lag Ps 

Tails off  to 0 at lags 

ks for k=1,2,… 

Tails off  to 0 after lag 

Ps 

9 



Model identification for Example 1 
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Tentative SARIMA MODELS 

 
ARIMA(0,0,2)(0,1,1)12   

• ACF shows a spike at lag 1, 2 and 12 but no other 

significant spikes. 

• The PACF tails off 

 

ARIMA(2,0,0)(2,1,0)12 

• ACF tails off. 

• The PACF spike at lag 1, 2,12, 13, 24 and 25 but no other 

significant spikes. 

 

ACF and PACF for first seasonal differencing (D=1) 

10 



Model identification for Example 2 

Tentative SARIMA MODELS 

 
ARIMA(0,1,1)(0,1,1)12   

• ACF shows a spike at lag 1, 11 and 12 but no other 

significant spikes. 

• ACF tails off. 

 

ARIMA(2,1,0)(1,1,0)12 

• ACF tails off. 

• The PACF spike at lag 1, 2, 14 and 18 but no other 

significant spikes. 
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ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1) 
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Model identification for Example 3 

Tentative SARIMA MODELS 

 
ARIMA(0,1,0)(0,1,1)12   

• ACF shows a spike at lag 12 but no other significant 

spikes. 

• The PACF dying down quickly at seasonal level. 

 

ARIMA(0,1,0)(2,1,0)12 

• ACF tails off. 

• The PACF spike at lag 12 and 24 but no other significant 

spikes. 

 

ACF and PACF for first ordinary (d=1)and first seasonal differencing (D=1) 
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• Once a tentative model has been identified, the 
estimates for constant and the coefficients of  the 
parameter SARIMA models must be obtained.   

• The model should be parsimonious (simplest form)  

• All parameters and constant  estimated should be 
significantly different from zero. Significance of  
parameters is tested using standard t-test 

 

 

• The parameters model are significances if   

   
13 

Parameter estimation 

estimate oferror  standard

parameter of estimatepoint 
statt

0.05.for 2  statt



Diagnostic checking 

SARIMA(p,d,q)(P,D,Q)s models are adequate if  

the residuals nearly the properties white noise 

process, i.e. the errors   

 constant on variances 

 Independent 

 normally distributed with zero means and 

variance σ2 

 

 14 



Diagnostics checking for Example 1 

Final Estimates of Parameters 

 

Type           Coef      SE Coef       T      P 

MA   1     -0.9540   0.0850  -11.23  0.000 

MA   2     -0.3076   0.0835    -3.68  0.000 

SMA  12   0.8716   0.0659   13.23  0.000 

 

 

Differencing: 0 regular, 1 seasonal of order 12 

Number of observations:  Original series 144, after 

differencing 132 

Residuals:    SS =  1826299 (backforecasts excluded) 

              MS =  14157  DF = 129 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                   12     24     36      48 

Chi-Square   44.0   68.2   88.3   99.4 

DF                      9     21     33       45 

P-Value     0.000  0.000  0.000  0.000 

Final Estimates of Parameters 

 

Type        Coef  SE Coef      T      P 

AR   1       0.8031   0.0880   9.13   0.000 

AR   2      -0.1669   0.0882  -1.89  0.061 

SAR  12  -0.6279   0.0751  -8.36  0.000 

SAR  24  -0.6053   0.0751  -8.06  0.000 

 

 

Differencing: 0 regular, 1 seasonal of order 12 

Number of observations:  Original series 144, after 

differencing 132 

Residuals:    SS =  1890332 (backforecasts excluded) 

              MS =  14768  DF = 128 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                   12     24     36        48 

Chi-Square   28.4   65.7  112.0   141.8 

DF                      8     20      32        44 

P-Value     0.000  0.000  0.000   0.000 

The t statistics are  

significant at α = 5% 
The t statistics are  

significant at α = 10% 

The LBQ statistics are significant as indicated by the small p-values 

for either model.  Conclusion: Both models 

are not Adequate models. 

Try using the other tentative 

models. 
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Final Estimates of Parameters 

 

Type        Coef        SE Coef       T      P 

AR   1      -0.8119   0.0796  -10.20  0.000 

AR   2      -0.4402   0.0800    -5.50  0.000 

SAR  12  -0.4086   0.0877     -4.66  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 144, after 

differencing 131 

Residuals:    SS =  9748163 (backforecasts excluded) 

              MS =  76158  DF = 128 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.2   26.8   43.0   56.5 

DF              9     21     33     45 

P-Value     0.265  0.179  0.114  0.117 

Final Estimates of Parameters 

 

Type       Coef  SE Coef      T      P 

MA   1      0.7805   0.0564  13.83  0.000 

SMA  12  0.4914   0.0804     6.11  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 144, after 

differencing 131 

Residuals:    SS =  9271841 (backforecasts excluded) 

              MS =  71875  DF = 129 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                 12       24       36      48 

Chi-Square   16.0    33.3   62.8   84.7 

DF                  10       22      34       46 

P-Value       0.101  0.058  0.002  0.000 
 

 

Diagnostics checking for Example 2 

The t statistics are  

significant at α = 5% 
The t statistics are  

significant at α = 5% 

The LBQ statistics are not significant at lag 12 and 24 .  Conclusion: Both models are 

Adequate models.  
The LBQ statistics are not significant as indicated by the p-values 

greater than 0.05.  
16 



Final Estimates of Parameters 

 

Type       Coef        SE Coef     T      P 

SMA  12  0.5854   0.0756  7.75  0.000 

SMA  24  0.0957   0.0781  1.23  0.222 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 192, after 

differencing 179 

Residuals:    SS =  1184.15 (backforecasts excluded) 

              MS =  6.69  DF = 177 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                12     24       36      48 

Chi-Square   19.3   33.3   41.9   50.6 

DF                 10     22       34      46 

P-Value     0.037  0.058  0.164  0.296 

 

 

Final Estimates of Parameters 

 

Type         Coef       SE Coef      T        P 

SMA  12  0.6776   0.0580    11.67  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 192, after 

differencing 179 

Residuals:    SS =  1169.30 (backforecasts excluded) 

              MS =  6.57  DF = 178 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                  12     24       36     48 

Chi-Square   19.2   32.9   41.1   49.8 

DF                   11     23       35      47 

P-Value     0.058  0.083  0.221  0.362 
 

Diagnostics checking for Example 3 

The t statistics are  

significant at α = 5% 

The t statistics is  

not significant at α = 

5%. Consider 

SARIMA(0,1,0)(1,1,0) 

Conclusion: Both models are 

Adequate models.  
The LBQ statistics are not significant as indicated by the p-values 

greater than 0.05, except at lag 12 
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Forecasting 

• Once the fitted model has been selected, it can be used 

to generate forecasts for future time periods.  

• The forecast values of  h-period ahead for 

SARMA(p,d,q)(P,D,Q) model is given by 

 

     

where the forecast values of  the SARIMA model may be 

found by replaced by their estimates when the actual 

values are not available.   

 

t
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Example 
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Monthly  (Jan 2001 -Dec 2012) 

The monthly data of  fishery landing in East Johor, covering the period 
from January 2001 to December 2012 with a total of  144 observations are 
used, as shown in Fig. 4. The time plot shows a clear seasonal pattern and 
the series fluctuate around a constant mean. The ACF cuts of  to zero 
quickly and significance in the large values at the seasonal lags 12, 24 and 
36. 
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(with 5% significance limits for the autocorrelations)

The series show no 

trend and a clear 

seasonal pattern 

The ACF trailed off to zero rather quickly no trend 

exists and ACF at lags 12, 24, 36 are significantly 

and slowly decreasing (seasonality exits) 
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Seasonal differencing 

• ACF at the seasonal lags 12, 24 and 36 were large and 

failed to die out quickly. This suggested the series is 

non-stationary seasonality data . Thus with non-

stationary seasonal data, we have to difference the 

observations using 

      

  

where s = 12 

 

t
s

sttt yByyw )1(  
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Seasonal differencing 
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The series after seasonal 

 differencing shows stationary 

Comparing the ACF with their error 

limits, the significant  ACF are at lag 1, 7 

and 12, , indicating MA(1) and SMA(1) 

behavior. The PACF appears to cut off  

after lag 1, 6, 12, 13, 24 indicating AR(1) 

and SAR(2) behavior  we will try: 

SARIMA(1,0,0)(2,1,0)12   and 

SARIMA(0,0,1)(0,1,1)12 
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ARIMA with MINITAB 

Final Estimates of  Parameters 

 

Type        Coef       SE Coef       T       P 

AR   1      0.4455    0.0790       5.64  0.000 

SAR  12  -0.7078    0.0842      -8.41  0.000 

SAR  24  -0.3252    0.0862      -3.77  0.000 

 

Differencing: 0 regular, 1 seasonal of  order 12 

Number of  observations:  Original series 144, 

after differencing 132 

Residuals:    SS =  210115255 (backforecasts 

excluded) 

              MS =  1628800  DF = 129 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

 

Lag               12       24       36        48 

Chi-Square   15.3     22.7    42.5     51.2 

DF                9        21       33        45 

 

P-Value        0.082  0.360   0.125   0.243 

Final Estimates of  Parameters 

 

Type        Coef   SE Coef       T      P 

MA   1     -0.4458   0.0782  -5.70  0.000 

SMA  12   0.8981   0.0643  13.96  0.000 

 

Differencing: 0 regular, 1 seasonal of  order 12 

Number of  observations:  Original series 144, after 

differencing 132 

Residuals:    SS =  175940657 (backforecasts excluded) 

              MS =  1353390  DF = 130 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag               12        24       36       48 

Chi-Square   12.2     16.6     25.7    31.2 

DF               10        22       34       46 

 

P-Value        0.275   0.787   0.847  0.954 

 

 

SARIMA(1,0,0)(2,1,0)

12 SARIMA(0,0,1)(0,1,1)

12 

The t statistics are significant at α = 

5% 

The LBQ statistics are not significant as indicated 

by the large p-values for either model.  
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ACF and PACF of residuals  

of SARIMA Model 
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(with 5% significance limits for the partial autocorrelations)

The ACF and PACF of  

residuals for 

SARIMA(1,0,0)(2,1,0)12  and 

SARIMA(0,0,1)(0,1,1) are well 

within their two standard error 

limits indicating residuals are 

white noise. 
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Model selection criteria 

 

 t-test Q-test AIC BIC 

SARIMA(1,0,0)(2,1,0)12   14.235 14.297 

SARIMA(0,0,1)(0,1,1)12   14.044 14.085 

     
 

Judging these results, it appears that the estimated 
SARIMA(0,0,1)(0,1,1)12 model best fits the data. 

  



Comparison of  actual and forecasted Values 

for SARIMA(0,0,1)(0,1,1)12 model 
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