Chap 6: Identification of ARIMA models

Ani Shabri

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia ani@utm.my

Jun 8, 2014

Chap 6: Identification of ARIMA models

Outline:

- Theoretically of ACF and PACF for MA(1)
- Sample ACF and PACF for MA(1)
- Theoretically of ACF and PACF for MA(2)
- Sample ACF and PACF for MA(2)
- Theoretically of ACF and PACF for AR(1)
- Sample ACF and PACF for AR(1)
- Theoretically of ACF and PACF for AR(2)
- Sample ACF and PACF for AR(2)
- Theoretically of ACF and PACF for ARMA $(1,1)$
- Sample ACF and PACF for ARMA(1,1)

Theoretically of ACF and PACF for MA(1)

The first Moving Average Model or MA(1) model

$$
Z_{t}=\varepsilon_{t}+\theta \varepsilon_{t-1}
$$

Invertibility condition:

$$
-1<\theta<1
$$

Theoretical of ACF
Theoretical of PACF

$$
\rho_{k}=\left\{\begin{array}{ll}
\frac{-\theta}{1+\theta^{2}} & \text { for } \mathrm{k}=1 \\
0 & \text { others }
\end{array} \quad \rho_{k k}=\frac{-\theta^{k}\left(1-\theta^{2}\right)}{1+\theta^{2(k+1)}} \text { for } \mathrm{k}=1,2,3, \ldots\right.
$$

Theoretical of ACF and PACF for MA(1)

Sample ACF and PACF for MA(1)

Theoretical of ACF and PACF for MA(2)

The second order Moving Average or MA(2) model

$$
Z_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}
$$

Invertibility condition:

$$
\theta_{1}+\theta_{2}<1 ; \theta_{2}-\theta_{1}<1 ;\left|\theta_{2}\right|<1
$$

Theoretical of ACF

$$
\rho_{k}= \begin{cases}\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}} & , k=1 \\ \frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} & , k=2 \\ 0 & , k>2\end{cases}
$$

Theoretical of PACF
Dies down (according to a
mixture of damped
Exponentials and/or
damped sine waves

Theoretical of ACF and PACF for MA(2)

Theoretical of ACF and PACF for MA(2)

Sample ACF and PACF for MA(2)

ACF [-0.5,-0.3]

ACF [0.5,0.3]

PACF [-0.5,-0.3]

PACF [0.5,0.3]

Sample ACF and PACF for MA(2)

ACF [-0.5,0.3]

ACF [0.5,-0.3]

PACF [-0.5,0.3]

PACF [0.5,-0.3]

ocw.utm.my

Theoretically of ACF and PACF for AR(1)

The first Autoregressive Model or AR(1) model

$$
Z_{t}=\phi_{1} Z_{t-1}+\varepsilon_{t}
$$

Stationarity condition:

$$
-1<\phi_{1}<1
$$

Theoretical of ACF

> Theoretical of PACF

$$
\rho_{k}=\phi_{1}^{k} \text { for } \mathrm{k}=0,1,2, \ldots
$$

$$
\rho_{k k}=\left\{\begin{array}{l}
\rho_{1} \text { for } \mathrm{k}=1 \\
0 \text { others }
\end{array}\right.
$$

Theoretical of ACF and PACF for AR(1)

12

Sample ACF and PACF for AR(1)

ACF [0.5]

ACF [-0.5]

PACF [0.5]

PACF [-0.5]

Theoretical of ACF and PACF for AR(2)

The second order Autoregressive or $\operatorname{AR}(2)$ model

$$
Z_{t}=\phi_{1} Z_{t-1}+\phi_{2} Z_{t-2}+\varepsilon_{t}
$$

Invertibility condition:

$$
\phi_{1}+\phi_{2}<1 ; \phi_{2}-\phi_{1}<1 ;\left|\phi_{2}\right|<1
$$

Theoretical of ACF
Theoretical of PACF

$$
\rho_{k}= \begin{cases}\frac{\phi_{1}}{1-\phi_{2}} & , k=1 \\ \phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2} & , k=2,3, \ldots\end{cases}
$$

$$
\rho_{k k}= \begin{cases}\rho_{1} & , k=1 \\ \phi_{2} & , k=2 \\ 0 & , k=3,4,5, \ldots\end{cases}
$$

Theoretical of ACF and PACF for AR(2)

Theoretical of ACF and PACF for AR(2)

Sample ACF and PACF for AR(2)

ACF [-0.5,-0.3]

ACF [0.5,0.3]

PACF [-0.5,-0.3]

PACF [0.5,0.3]

Sample ACF and PACF for AR(2)

ACF [-0.5,0.3]

ACF [0.5,-0.3]

PACF [-0.5,0.3]

PACF [0.5,-0.3]

Theoretically of ACF and PACF for ARMA(1,1)

The Mixed Autoregressive Moving Average Model or ARMA $(1,1)$ model

$$
Z_{t}=\phi_{1} Z_{t-1}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}
$$

Stationarity and invertibility condition:

$$
-1<\phi_{1}<1 \quad ;-1<\theta_{1}<1
$$

Theoretical of ACF

$$
\rho_{k}= \begin{cases}\frac{\left(\phi_{1}-\theta_{1}\right)\left(1-\phi_{1} \theta_{1}\right)}{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}}, & , \mathrm{k}=1 \\ \phi_{1} \rho_{k-1} & , \mathrm{k} \geq 2\end{cases}
$$

Theoretical of PACF
Dies down (according to a mixture of damped Exponentials and/or damped sine waves

Theoretical of ACF and PACF for ARMA (1,1)

Theoretical of ACF and PACF for ARMA $(1,1)$

Theoretical of ACF and PACF for ARMA $(1,1)$

Sample ACF and PACF for ARMA(1,1)
 ACF [0.5,0.3]
 PACF [0.5,0.3]

ACF [-0.5,-0.3]

PACF [-0.5,-0.3]

Sample ACF and PACF for ARMA(1,1)

ACF [-0.5,0.3]

ACF [0.5,-0.3]

PACF [-0.5,0.3]

PACF [0.5,-0.3]

