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Introduction to Box-Jenkins methodology 

• Box-Jenkins (BJ) methodology or Autoregressive 

Integrated Moving Average (ARIMA) models are a class 

of  linear models that is capable of  representing 

stationary as well as non-stationary time series. 

• The BJ methodology refers to a set of  procedures for 

identifying, fitting, estimating and checking ARIMA 

models with time series data. Forecast follow directly 

from the form of  fitted model. 

• The BJ methodology aims to obtain a model that is 

parsimony. Parsimony referred a model has the smallest 

number of  parameters needed to adequately fit the 

patterns in the data observed. 
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Box-Jenkins methodology procedure 

• Stationary: Stationary is a fundamental property underlying for ARIMA 

model.  In this step, non-stationary to achieve stationary series usually by 

taking first and second difference of  the data.  

• Identification: When the data are confirmed stationary, one may proceed to 

tentative identification of  models through visual inspection of  both the 

autocorrelation function (ACF) and partial autocorrelation function (PACF). 

• Estimation: Determine coefficients and estimate of  the ARIMA model  

using various techniques such as the least squares, moment  and maximum 

likelihood methods. 

• Diagnostics: Having estimated the coefficients, the model is then tested for 

its adequacy. Test statistics, ACFs and PACFs of  residuals  were used to verify 

whether the model is valid. If  valid then use the decided model, otherwise 

repeat the steps of  Identification, Estimation and Diagnostics. 

• Forecast: Once the model’s fitness has been confirmed, the model then ready 

to be used to generate the forecasts for future value.  
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Stationarity 

• A stationary process has the property that the mean, 
variance and auto-covariance structure do not change 
over time.  

• A time series yt is said to be stationary if  it satisfies the 
following conditions: 

 i.  

 ii.   

 iii.  

 

• Visually, it is a flat looking series, without trend, fluctuates 
around a constant mean and the autocorrelation function 
(ACF) tails off  toward zero quickly.  

• Transformation will be used when time series is not 
stationary in variances.  
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Transformations to achieve stationary 

• Differencing is often used to made series stationary in mean.  

• Number of  times differencing is needed to achieve 

stationary is called “order of  integration”. In most cases, 

first and second order is sufficient.  

 1st  differencing : 

 2nd differencing :  

 

• For the series shows increasing in variability over time, 

normally we use 

• logarithm    :  

• or square root :  
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Models for stationary time series 

Mixed Autoregressive & Moving Average model, ARMA(p, q) 

 

 

Autoregressive model, AR(p) or ARMA(p, 0) 

 

 

Moving Average model, MA(q) or ARMA(0, q) 
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Determining a tentative ARIMA models 

• Behavior of  ACF and PACF were used to determine the appropriate 
ARIMA model. ACF measures the linear relationship between time 
series observations separated by a lag of  k time units. The sample ACF  
is computed by 

 

 

 

 

 
 

 

 

• The ACF is called cut off  at 95% confidence interval if  value of      lie 
in the range  
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Interpretation of behavior of sample ACF 

The sample ACF is said to die down if  this function  does 
not cut off  but rather decreases in a ‘steady fashion’. The 
sample ACF can die down in 

 (i) a damped exponential fashion 

 (ii) a damped sine-wave fashion 

 (iii) a fashion dominated by either one of  or a   

       combination of  both (i) and (ii). 

 The SAC can die down fairly quickly or extremely slowly. 

 

Note: Behavior of  ACF and PACF usually drawn with 
95% confidence interval.  
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Interpretation of behavior of sample PACF 

• PACF is used to measure the degree of  association between Yt and Yt-k, when 
the effects of  other time lags (1, 2, 3, …, k – 1) are removed. The sample 
PACF is given by 

 

 

 

 

 

 

• The trkk
 statistic is                        where  

 

 

• The PACF is called cut off  at 95% confidence interval if  value of       lie in the 
range   

 

• Behavior of sample PACF similar to its of the sample ACF. 
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Identification ARIMA models 
 

Summary Of  The Behaviour Of  Autocorrelation And Partial 

Autocorrelation Functions 

ACF PACF 

AR(p) Exponential decay/tails off  

towards zero/damped sine wave  

Cut off  after the order p 

MA(q) Cut off  after the order q Exponential decay/tails off  

towards zero/damped sine wave  

ARMA(p,q) Exponential decay/tails off  

towards zero/damped sine wave  

Exponential decay/tails off  

towards zero/damped sine wave  

* Note: Sometimes order of  p and q cannot be determined from 

 ACF and PACF. May use trail and error starting with simplest  

models AR(1), MA(1) and ARMA(1,1). 



Parameter estimation technique 

• Once a “tentative” model has been identified, the 

parameters for the models need be estimated. 

• Many computer softwares have programs/algorithms 

will automatically find appropriate initial estimates of  

the parameters ARIMA model and then successively 

refine them until the optimum values of  the parameters 

are found. Usually they use  

 - maximum likelihood - for ARIMA process 

 - non-linear least squares - for AR process 

 - method of  moments - for AR process 
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• Once a tentative model has been identified, the 
estimates for constant and the coefficients of  the 
parameter ARIMA models must be obtained.   

• The model should be parsimonious (simplest form)  

• All parameters and constant  estimated should be 
significantly different from zero. Significance of  
parameters is tested using standard t-test 

 

 

• The parameters model are significances if   
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Estimating the parameters ARIMA model 
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Diagnostics Checking 

In the model-building process, if  an ARIMA(p, d, q) model is 

chosen (based on the  ACFs and PACFs), some checks on the 

model adequacy are required. A residual analysis is usually 

based on the fact that the residuals of  an adequate model 

should be approximately white noise. Basically, a model is 

adequate if  the residuals nearly the properties white noise 

process, i.e. the errors   

 constant on variances 

 Independent 

 normally distributed with zero means and variance σ2 
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Constant on variances 

• Variance of  residuals are constant can be 
checked by plot the residuals or 
standardized residuals. Absence of  any 
trends or pattern may also for suggestion 
of  dependence residuals.  

• The variance of  errors is constant if  
standardized residuals are within      or 
almost all of  them should be within                                                                                            
±3  and should exhibit the random 
pattern 
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Constant on variances 

Random errors 

Trend not full accounted for 

Cyclical effects not accounted for 

Seasonal effects not accounted for 

T T 

T T 

e 

e e 

0 0 

0 0 

Standardized Residuals Standardized Residuals 

Standardized Residuals Standardized Residuals 
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If  an ARMA(p,q) model is an adequate representation of  the data 
generating process, then the residuals should be independent. 2 Tests 
were considered 

i. ACF of  residuals mostly falls inside Barlett confidence interval.  

ii.  Portmanteau test statistic uses sample ACF of  the residuals as a 
group to examine the following hypothesis: 

 

 

 Portmanteau test statistic: 

 

 

 Hypothesis nol            is rejected when   

 If          rejected, say up to 3, 6 and 12 lags, suggest to look for 
another better model. 
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Independent test 
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Normality test 
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where n is the number of  observations (or degrees of  freedom 

in general); S is the sample skewness, and K is the sample 

kurtosis: 
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In statistics, the Jarque–Bera (JB) test is one procedure for 

determining whether sample data (residuals) are normal 

distribution. The test is named after Carlos Jarque and Anil K. 

Bera. The test statistic JB is defined as 
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Model selection criteria 

In many practical situation, many possible ARIMA models 
adequate to fit the data.  AIC and SBC criteria can be used to 
choose the best model among all possible models. 

• Akaike Information Criterion (AIC) 

   

 

• Bayesian Information Criterion (BIC) 

   

  

       r = number of  parameters to be estimated, 

       n = number of  observations. 

                 SSE= sum of  square error         

• Ideally, the AIC and SBC should be as small as possible 
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Forecasting 

• Once the fitted model has been selected, it can be used 

to generate forecasts for future time periods.  

• The forecast values of  h-period ahead for ARMA(p,q) 

model is given by 

 

     

where the forecast values of  the ARIMA model may be 

found by replaced by their estimates when the actual 

values are not available.   
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Example 
Monthly data of  water demand in Kluang Johor in Malaysia from January 1995 to 
December 2011. 

 

 

 

 

 

 

 

 

 

 

• The time series plot shows that it is non-stationary in the mean. 

• The ACF also shows a pattern typical for a non-stationary series: 

i. Large significant ACF for the first 16 time lag 

ii. Slow decrease in the size of  the autocorrelations. 
 

We take the first differences of the data and reanalyze. 
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Time Series Plot of Water Demand

The series show long-term increasing 

and decreasing trends. 
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The ACF  tails off  

extremely  slowly 
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First difference of  water demand data 
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Example 

• The plot and ACF (cuts off  quickly) of  the 1st 
difference of  water demand suggests the series is 
stationary. 

• Based on ACF and PACF, 3 tentative models are 
identified 

i. ARIMA(0,1,1)-ACF cuts off  after lag 1 and PACF 
shows a exponential decay  

ii. ARIMA (2,1,1)-ACF follows a damped cycle and 
PACF cuts off  after lag 2. 

iii. ARIMA(1,1,1)-ACF and PACF decay 
exponentially.  
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ARIMA with MINITAB 

Final Estimates of Parameters 

 

Type       Coef  SE Coef      T      P 

AR   1  -0.5031   0.0686  -7.33  0.000 

AR   2  -0.2305   0.0686  -3.36  0.001 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 204, 

after differencing 203 

Residuals:    SS =  5143.83 (backforecasts 

excluded) 

              MS =  25.59  DF = 201 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

 

Lag               12     24      36       48 

Chi-Square   28.8   40.2   64.5   83.0 

DF               10       22      34      46 

P-Value      0.001  0.010  0.001  0.001 

 

Final Estimates of Parameters 

 

Type      Coef  SE Coef      T      P 

MA   1  0.6793   0.0516  13.16  0.000 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 204, 

after differencing 203 

Residuals:    SS =  4874.03 (backforecasts 

excluded) 

              MS =  24.13  DF = 202 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

 

Lag               12     24       36      48 

Chi-Square   25.3   37.9    58.4   77.2 

DF               11      23      35       47 

P-Value       0.008  0.026  0.008  0.004 

 

Final Estimates of Parameters 

 

Type      Coef  SE Coef      T      P 

AR   1  0.1849   0.0997   1.85  0.065 

MA   1  0.7765   0.0634  12.24  0.000 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 204, 

after differencing 203 

Residuals:    SS =  4789.01 (backforecasts 

excluded) 

              MS =  23.83  DF = 201 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

 

Lag               12     24      36       48 

Chi-Square   17.1   27.6   51.3    70.8 

DF                10     22      34        46 

P-Value       0.072  0.190  0.029  0.011 

 

ARIMA(2,1,0) 
ARIMA(0,1,1) 

ARIMA(1,1,1) 

The LBQ statistics are significant as indicated by the small p-values 

for either model.  

The LBQ statistics are not significant at α = 10% 

The t statistics are  

significant at α = 

10% 
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Example 
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• The results indicate that ARIMA(1,1,1) residuals are 
uncorrelated at least up to lag 48, while ARIMA(2,1,0) and 
ARIMA(0,1,1) residuals are correlated. 

• The ACF and PACF of  residuals of  ARIMA(1,1,1) are well 
within their two standard error limits indicating residuals are 
white noise. 
 

 

ACF and PACF of  residual of  ARIMA(1,1,1) 

There is no significant residual autocorrelation for 

the ARIMA(1,1,1) model.  
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Example 
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The Figure shows that the  

residuals follow normal distribution  

and have constant variances 

The results shows that ARIMA(1,1,1) model is an adequate model. 

The residual 

autocorrelation  

follows normal distribution 

The residual has constant 

variances 
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Model selection criteria 

 

 t-test Q-test AIC BIC 

ARIMA(2,1,1)  x 3.247 3.280 

ARIMA(0,1,1)  x 3.183 3.200 

ARMA(1,1,1)   3.176 3.208 
 

 

 

Judging these results, it appears that the estimated ARIMA(1,1,1) model best fits 
the data. 
  



Comparison of actual and forecasted value using 

ARIMA(1,1,1) model 
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(with forecasts and their 95% confidence limits)
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