

Chapter 1 FLUID PROPERTIES *by Amat Sairin Demun*

Learning Outcomes

Upon completing this chapter, the students are expected to be able to:

- 1. State the fluid phases and the types of fluid.
- 2. *List and define the physical properties of fluid.*
- *3. Relate each fluid property.*
- *4. Calculate the fluid properties.*

1.1) Introduction

a) Phases of Fluid

Liquid –	incompressible (water, oil, etc)
Gas –	compressible (water vapor, etc)

b) Types of Fluid

Ideal Fluid	_	No viscosity, no friction while moving
Real Fluid	—	With viscosity, have friction while moving

1.2) Fluid Properties

Only physical properties will be discussed (Not on chemical properties)

a) **Density**, ρ

$Density = \frac{Mass}{Volume}$		$\rho = \frac{m}{V}$	kg/m ³
Example:	Plain water, Mercury,	$\rho = 1000 \text{ kg/m}^3$ $\rho = 13570 \text{ kg/m}^3$	

b) Specific Gravity, sg

Is also known as Relative Density. $SpecificGravity = \frac{FluidDensity}{WaterDensity}$

$$sg = \frac{\rho_{fluid}}{1000}$$
 no unit

ocw.utm.my

innovative • entrepreneurial • global

 $\therefore \rho_{fluid} = 1000(sg)$

c) Specific Weight, γ

SpecificWe ight =
$$\frac{Weight}{Volume}$$
 N/m³
 $\gamma = \frac{W}{V} = \frac{mg}{V}$ but $\frac{m}{V} = \rho$
therefore $\underline{\gamma = \rho g}$ where g = gravitational acceleration
 $= 9.81 \text{ m/s}^2$

d) Specific Volume, V_S

SpecificVo lume =
$$\frac{Volume}{mass}$$
 $V_s = \frac{V}{m}$ m³/kg
 $V_s = \frac{1}{\rho}$

e) **Dynamic Viscosity**, μ

Is the fluid property that resists shear force. Is the shear force per unit area to drag a thin sheet on a fluid.

This sheet
(Wetted surface area = A)
Moving velocity,
$$\Delta u$$

Force, F
Fhid
 $\mu = \tau \frac{\Delta y}{\Delta u}$ unit = $\frac{Ns}{m^2}$ or Pa.s or $\frac{kg}{m.s}$ where $\tau = \frac{F}{A}$
Example: Water flow easily than oil.
Oil is viscous than water.

f) Kinematics Viscosity, *v*

$\mu = \frac{\mu}{\mu}$	m^2
$\rho = -\rho$	S

ocw.utm.my

g) Modulus of Elasticity, E

The concept of modulus of elasticity of a fluid is illustrated in the following figure, where:

ΔP	=	change in pressure (Pa) where $P = \frac{F}{A}$
ΔV	=	change in volume (m ³)
V_1	=	Initial volume before the pressure is applied (m^3)

Then,
$$E = -\frac{V_1(\Delta P)}{\Delta V}$$
 unit = Pa or $\frac{N}{m^2}$

- h) Surface Tension, σ (N/m)
- i) Capillarity
- j) Vapor Pressure, P_{v}
- Note: All physical properties of fluid are depends on the fluid temperature.

ocw.utm.my