

SSCM 1313

C++ COMPUTER PROGRAMMING

Chapter 6:
Class, Object and Function

Authors:

Farhana Johar
Professor Dr. Shaharuddin Salleh

Class, Object and Function

Object-oriented approach:

Function. Classes and their objects, Constructor/ destructor and function overloading.

Inheritance, class collaboration and polymorphism. Dynamic memory allocation.

Applications in graph theoretical and matrix problems.

C++ Language Organization

Pre-processing area

Start

Constructor

main()
Functions according to their

calls in main()

Destructor

End

Figure 6.1. Order of execution in a typical C++ program.

Class
 a grouping of variables and functions that have a common ancestor

 a special form of structure

 object is an instance of a class

 members of a class consist of variables, functions and structures,

which are global

class Name of Class

{

private:

 List of variables

public:

 List of variables and functions

};

Example:

Visibility of Members

 Members of a class are variables, structures and functions

 Each member are global, and its scope is either private or

public

private

 for variables or structures only

 the scope is global but limited to member functions only

public

 for variables, structures and functions

 The scope covers the whole program including non-member functions

Function

 a module or one unit of work in a program that can be called for solving a

given problem

 Needed in order to make the program structured and modular

 A function must have a name.

 A function must belong and declared into a class.

 A function must be a prototype from one of the followings

 void
 int
 float
 double
 char
 bool

 A function of type other than void must return a value, and its return value is

received by a variable from another function.

 A function may include argument(s) for passing or receiving data to another
function.

type ClassName :: FunctionName(arguments)

{

 // body of statements

}

Example:




Special Functions


Constructor

 A special function which has the same name as the class

 a function with no specific class

 allocates memory for the class

 a suitable place for initializing global variables

Destructor

 a special function which has the same name as the class preceded with a tilde

 a function with no specific class

 deallocates memory from the class

 a suitable place for destroying global variables and arrays

VC2010 Code6A.cpp: Class and object.

VC2010
Code6B.cpp: Class, object and method.

VC2010
Code6C.cpp: Class construction.

VC2010
Code6D.cpp: Class construction in a compact form.

Function Overloading
 Different functions using the same name

VC2010
Code6E.cpp: Constructor overloading.

VC2010
Code6F.cpp: Overloading in functions.

Data Passing

 The transfer of data from one function to another

Rules for data passing between functions

 both the passing and receiving functions must be declared with the same

prototypes

 both the passing and receiving functions must match in their argument types
and prototypes

VC2010
Code6G.cpp: Data passing between functions.

VC2010
Code6H.cpp: Array passing between functions.

6.7 Data Passing involving Structure

Rules for data passing

 both the passing and receiving functions must be declared with the same
prototypes

 both the passing and receiving functions must match in their argument types

and prototypes

 POINT and LINE are structures.

 Ln is a local object of LINE.

 p, q, b and e are the objects of POINT.

 Who are the members of POINT and LINE?

Ln[1]

Ln[2]

q[1]=Ln[1].b

q[2]=Ln[1].e=Ln[2].b

q[3]=Ln[2].e

VC2010
Code6I.cpp: Class with structure.

6.8 Class Inheritance

 Inheritance refers to resources such as variables belonging to an earlier class
which can be shared by newer classes.

 The earlier class is called the base class

 The newer classes are called inherited classes



Inheritance rules

 the inherited class can access any member of the base class, but not the

other way around

 several levels of inheritance are supported in C++

VC2010
Code6J.cpp: Two classes collaborating.

#include <fstream>
#include <iostream>
#define N 6
using namespace std;

class A
{
public:
 A() {}
 ~A() {}
 void DataInput(int **);
};

void A::DataInput(int **p)
{
 ifstream InFile("Code6J.in");
 for (int i=1;i<=N;i++)
 for (int j=1;j<=i;j++)
 {
 InFile >> p[i][j];
 p[j][i]=p[i][j];
 }
}

class B
{
public:
 B() {}
 ~B() {}
 void Adjacency();
};

void B::Adjacency()
{
 A g;
 int **q,i,j;
 q=new int *[N+1];
 for (i=1;i<=N;i++)
 q[i]=new int [N+1];
 g.DataInput(q);
 cout << "Weights of adjacent edges" << endl;
 for (i=1;i<=N;i++)
 {
 for (j=1;j<=N;j++)
 if (q[i][j]!=99)
 cout << "w(" << i << "," << j << ")="
 << q[i][j] << endl;
 cout << endl;
 }
 delete q;
}

void main()
{
 B m;
 m.Adjacency();
 cin.get();
}





VC2010
Code6K.cpp: Illustrating inheritance.

#include <fstream>
#include <iostream>
#define N 6
using namespace std;

class A
{
public:
 A() { }
 ~A() { }
 void DataInput(int **);
};

void A::DataInput(int **p)
{
 ifstream InFile("Code6J.in");
 for (int i=1;i<=N;i++)
 for (int j=1;j<=i;j++)
 {
 InFile >> p[i][j];
 p[j][i]=p[i][j];
 }
}

class B : public A
{
public:
 B() { }
 ~B() { }
 void Adjacency();
};

void B::Adjacency()
{
 int **q,i,j;
 q=new int *[N+1];
 for (i=1;i<=N;i++)
 q[i]=new int [N+1];
 DataInput(q);
 cout << "The adjacency matrix of G is given by: " <<endl;
 for (i=1;i<=N;i++)
 {
 for (j=1;j<=N;j++)
 cout << ((q[i][j]==99)?0:1) << " ";
 cout << endl;
 }
 cout <<endl;
 delete q;
}

void main()
{
 B m;
 m.Adjacency();
 cin.get();

}

Polymorphism

 2 or more functions using the same name which exist in two or more

classes, including the base and derived classes

 For these 2 functions, a function from the base class is called by

default whenever it is called (refer to Code6L.cpp)

 To override the function from the base class, always declare the

function in the base class as virtual (refer to Code6M.cpp)

