

SSCM 1313

C++ COMPUTER PROGRAMMING

Chapter 6:
Class, Object and Function

Authors:

Farhana Johar
Professor Dr. Shaharuddin Salleh

Class, Object and Function

Object-oriented approach:

Function. Classes and their objects, Constructor/ destructor and function overloading.

Inheritance, class collaboration and polymorphism. Dynamic memory allocation.

Applications in graph theoretical and matrix problems.

C++ Language Organization

Pre-processing area

Start

Constructor

main()
Functions according to their

calls in main()

Destructor

End

Figure 6.1. Order of execution in a typical C++ program.

Class
 a grouping of variables and functions that have a common ancestor

 a special form of structure

 object is an instance of a class

 members of a class consist of variables, functions and structures,

which are global

class Name of Class

{

private:

 List of variables

public:

 List of variables and functions

};

Example:

Visibility of Members

 Members of a class are variables, structures and functions

 Each member are global, and its scope is either private or

public

private

 for variables or structures only

 the scope is global but limited to member functions only

public

 for variables, structures and functions

 The scope covers the whole program including non-member functions

Function

 a module or one unit of work in a program that can be called for solving a

given problem

 Needed in order to make the program structured and modular

 A function must have a name.

 A function must belong and declared into a class.

 A function must be a prototype from one of the followings

 void
 int
 float
 double
 char
 bool

 A function of type other than void must return a value, and its return value is

received by a variable from another function.

 A function may include argument(s) for passing or receiving data to another
function.

type ClassName :: FunctionName(arguments)

{

 // body of statements

}

Example:

Special Functions

Constructor

 A special function which has the same name as the class

 a function with no specific class

 allocates memory for the class

 a suitable place for initializing global variables

Destructor

 a special function which has the same name as the class preceded with a tilde

 a function with no specific class

 deallocates memory from the class

 a suitable place for destroying global variables and arrays

VC2010 Code6A.cpp: Class and object.

VC2010
Code6B.cpp: Class, object and method.

VC2010
Code6C.cpp: Class construction.

VC2010
Code6D.cpp: Class construction in a compact form.

Function Overloading
 Different functions using the same name

VC2010
Code6E.cpp: Constructor overloading.

VC2010
Code6F.cpp: Overloading in functions.

Data Passing

 The transfer of data from one function to another

Rules for data passing between functions

 both the passing and receiving functions must be declared with the same

prototypes

 both the passing and receiving functions must match in their argument types
and prototypes

VC2010
Code6G.cpp: Data passing between functions.

VC2010
Code6H.cpp: Array passing between functions.

6.7 Data Passing involving Structure

Rules for data passing

 both the passing and receiving functions must be declared with the same
prototypes

 both the passing and receiving functions must match in their argument types

and prototypes

 POINT and LINE are structures.

 Ln is a local object of LINE.

 p, q, b and e are the objects of POINT.

 Who are the members of POINT and LINE?

Ln[1]

Ln[2]

q[1]=Ln[1].b

q[2]=Ln[1].e=Ln[2].b

q[3]=Ln[2].e

VC2010
Code6I.cpp: Class with structure.

6.8 Class Inheritance

 Inheritance refers to resources such as variables belonging to an earlier class
which can be shared by newer classes.

 The earlier class is called the base class

 The newer classes are called inherited classes

Inheritance rules

 the inherited class can access any member of the base class, but not the

other way around

 several levels of inheritance are supported in C++

VC2010
Code6J.cpp: Two classes collaborating.

#include <fstream>
#include <iostream>
#define N 6
using namespace std;

class A
{
public:
 A() {}
 ~A() {}
 void DataInput(int **);
};

void A::DataInput(int **p)
{
 ifstream InFile("Code6J.in");
 for (int i=1;i<=N;i++)
 for (int j=1;j<=i;j++)
 {
 InFile >> p[i][j];
 p[j][i]=p[i][j];
 }
}

class B
{
public:
 B() {}
 ~B() {}
 void Adjacency();
};

void B::Adjacency()
{
 A g;
 int **q,i,j;
 q=new int *[N+1];
 for (i=1;i<=N;i++)
 q[i]=new int [N+1];
 g.DataInput(q);
 cout << "Weights of adjacent edges" << endl;
 for (i=1;i<=N;i++)
 {
 for (j=1;j<=N;j++)
 if (q[i][j]!=99)
 cout << "w(" << i << "," << j << ")="
 << q[i][j] << endl;
 cout << endl;
 }
 delete q;
}

void main()
{
 B m;
 m.Adjacency();
 cin.get();
}

VC2010
Code6K.cpp: Illustrating inheritance.

#include <fstream>
#include <iostream>
#define N 6
using namespace std;

class A
{
public:
 A() { }
 ~A() { }
 void DataInput(int **);
};

void A::DataInput(int **p)
{
 ifstream InFile("Code6J.in");
 for (int i=1;i<=N;i++)
 for (int j=1;j<=i;j++)
 {
 InFile >> p[i][j];
 p[j][i]=p[i][j];
 }
}

class B : public A
{
public:
 B() { }
 ~B() { }
 void Adjacency();
};

void B::Adjacency()
{
 int **q,i,j;
 q=new int *[N+1];
 for (i=1;i<=N;i++)
 q[i]=new int [N+1];
 DataInput(q);
 cout << "The adjacency matrix of G is given by: " <<endl;
 for (i=1;i<=N;i++)
 {
 for (j=1;j<=N;j++)
 cout << ((q[i][j]==99)?0:1) << " ";
 cout << endl;
 }
 cout <<endl;
 delete q;
}

void main()
{
 B m;
 m.Adjacency();
 cin.get();

}

Polymorphism

 2 or more functions using the same name which exist in two or more

classes, including the base and derived classes

 For these 2 functions, a function from the base class is called by

default whenever it is called (refer to Code6L.cpp)

 To override the function from the base class, always declare the

function in the base class as virtual (refer to Code6M.cpp)

