

AERATED LAGOON

Inspiring Creative and Innovative Minds

ocw.utm.my

ocw.utm.my

Problem with Facultative Pond

High organic loading High flow rate

ocw.utm.my

Lack of oxygen Anaerobic

Odor

Solution

Introduce **mechanical aerator**

Facultative Pond Aerated Lagoon

A suspended growth process Similar to AS but without sludge recycling

Similar to WSP but with mechanical aerator

Up to 90% BOD₅ removal

HRT = **2-6 days**

MLSS = 200 – 400 mg/L

Almost no settling in the lagoon

Design and Arrangement

Followed by maturation pond(s)

Depth: 2-4 m

Effluent BOD₅ from AL can be divided into: Dissolved organics Solid organics

Relationship between influent BOD₅ and (dissolved) effluent BOD₅

where: $I_i = influent BOD_5$

- $F_e = dissolved effluent BOD_5$
- K = dissolved BOD₅ removal rate constant

Temperature effect on K value

$K_{T} = 5 (1.035)^{T-20}$

Total BOD₅ Effluent, I_e $I_e = F_e + 0.95X$ $X = \frac{Y(I_i - F_e)}{1 + bt}$

- X = cell concentration in the lagoon, mg/L
- Y = yield rate coefficient = 0.6 0.7
 - = mass of developed cells/mass of BOD used
- b = autolysis rate = 0.07 day⁻¹ at 20°C