

WASTE STABILIZATION POND

Inspiring Creative and Innovative Minds

ocw.utm.my

300 years experience

Shallow man-made basins

Round, square, rectangular or irregular shape

Advantages

Simplicity

- Simple to construct
- Simple to operate and maintain
- Only unskilled labor is needed

Low Cost

Capital and operational

Advantages

High Efficiency BOD removal > 90% Total N removal 70-90% Total P removal 30-45% Effective in removing pathogens

Principal Requirements

Sufficient land is available

Soil should preferably have a coefficient of permeability < 10⁻⁷ m/s (to avoid the need for pond lining)

Types of WSP Facultative pond Maturation pond

(1) Facultative pond

Maturation pond

ocw.utm.my

Facultative Pond

1-2 m deep

Primary function is **BOD** removal

Sedimentation of settleable solids Oxidation of non-settleable solids by heterotrophic bacteria

ocw.utm.my

Zones in Facultative Pond

Aerobic zone (surface)

Facultative zone (middle)

Anaerobic zone (bottom)

Aerobic zone

Also known as surface zone

Aerobic bacteria and algae exist in symbiosis

Algae provide bacteria with oxygen

Bacteria provide algae with carbon dioxide

Facultative zone

Also known as intermediate zone

Partly aerobic and anaerobic

Decomposition of organic by facultative bacteria

Anaerobic zone

Also known as **bottom** zone

Anaerobic condition

Accumulated solids decomposed by anaerobic bacteria

Maturation Pond

1-1.5 m deep

Receive effluent from facultative pond

Primary function is **removal of pathogens**

Small amount of BOD removal occurs

Pathogen Removal

- Faecal bacteria are removed in facultative and especially maturation ponds
- The principal mechanism removal are:
- Time and temperature
- Light of wavelength <mark>425 700 nm</mark> can damage faecal bacteria
- Sedimentation (especially protozoan cyst and helminth eggs)

Design Facultative Pond

Inspiring Creative and Innovative Minds

ocw.utm.my

Permissible BOD loading $\lambda_{s,max}$

$\lambda_{s,max} = 350 (1.107 - 0.002T)^{T-25}$

where T = temperature

Surface BOD loading (λ_s , kg/ha .d)

$$\lambda_{\rm s} = 10 L_{\rm i} Q/A_{\rm f}$$

where A_f = facultative pond area, m² Li = BOD influent, mg/L Q = flow rate, m³/d

Area of facultative pond

$$A_f = 10L_iQ/\lambda_s$$

Hydraulic retention time

$t_f = A_f D/Q$

where D = pond depth, m $Q = wastewater flow, m^3/day$

Design Maturation Pond

Inspiring Creative and Innovative Minds

ocw.utm.my

Based on **faecal coliform removal**. The equation for a **single** pond:

$$N_e = N_i / (1 + k_T t)$$
 (Eqn. 9.4)

 $N_e = number of FC per 100 mL of effluent$ $N_i = number of FC per 100 mL of influent$ $k_T = first order rate constant for FC removal, 1/day$ t = hydraulic retention time, day

For a series of facultative and maturation ponds

$$N_{e} = \frac{N_{i}}{\left(1 + K_{T}t_{f}\right)\left(1 + K_{T}t_{m}\right)^{n}}$$

 N_e = number of FC/100 mL of the final effluent N_i = number of FC per 100 mL of influent n = number of maturation

The value of k_{T} is temperature dependent

$$k_{T} = 2.6 (1.19)^{T-20}$$

Effluent for a single tank

$$I_{e} = \frac{I_{i}}{K_{1}t + 1}$$

- $I_e = BOD effluent concentration, mg/L$
- $I_i = influent concentration, mg/L$
- K₁ = first order rate constant for BOD removal, per day
 - t = retention time, day

For n ponds in series

$$I_{e} = \frac{I_{i}}{(1 + K_{1}t_{f})(1 + K_{1}t_{m})^{n}}$$

Effect of temperature

$$K_{1(T)} = K_{1(20)} \theta^{T-20}$$

 $K_1@20^{\circ}C = 0.3 \text{ per day and } \theta = 1.05$