

Introduction to Environmental Microbiology

Inspiring Creative and Innovative Minds

ocw.utm.my

Why Should We Know about Microorganisms

Waste is their business Degrade waste "Free" environmental worker

Know their environment and requirements

What are Microorganisms

Tiny living organisms (microns, 10⁻³mm)

Bacteria, fungus, protozoa, virus, algae

Live as a community

Why are they important

Cause diseases to man and other living organisms

Chicken pox – virus Common cold – virus Diarrheal diseases – bacteria, protozoa Malaria – protozoa Meningitis – bacteria, virus

In Wastewater Treatment

Degrade waste (organic and inorganic matters) into simple and harmless compounds

Organic and inorganic matters \downarrow (microorganisms) \downarrow $CO_2 + H_2O + new cells$

Important component !!!!

Bacteria (plural of bacterium)

Inspiring Creative and Innovative Minds

OPENCOURSEWARE

(cc)

BY NC SA

ocw.utm.my

Single-cell

0.5 – 5.0 μm

Cell wells of the second secon

Cassal

Individual, in pairs or in chains

Different shapes

Reproduce through binary fission (Double within 15 – 30 minute)

Important in biological wastewater treatment

Classification

1 Energy and Carbon sources

2 Utilization of dissolved oxygen

(1) Energy and Carbon Sources

For growth and reproduction Energy – to do work Carbon sources – raw material

(i) Heterotroph

Organic as energy and carbon sources

(ii) Autotroph

Inorganic as energy source Carbon dioxide as carbon source

(2) Utilization of Dissolved Oxygen

Aerobe Anaerobe Facultative

ocw.utm.my

Aerobe

Live in the presence of dissolved oxygen

Die without dissolved oxygen

Anaerobe

Live in the absence of dissolved oxygen Die in the presence of dissolved oxygen Use oxygen from compounds such as NO_3^- , SO_4^{2-}

ocw.utm.my

Facultative

Can live in aerobic or anaerobic conditions

Bacterial Growth

Inspiring Creative and Innovative Minds

Reproduced by binary fission (i.e. by dividing, the original cell becomes two new organisms)

Inspiring Creative and Innovative Minds

Video binary fission

Inspiring Creative and Innovative Minds

Bacterial Growth Phase

Lag Phase Exponential Growth Phase Stationary Phase Death/Endogenous Phase

Lag Phase Acclimatization period

(2) Exponential Growth Phase

Excess substrate promotes maximum growth rate

Limited by ability bacteria to reproduce

③ Stationary Phase Substrate or nutrients almost finish Growth of new cells is offset by the death of old cells

④ Death/Endogenous Phase Death rate > production of new cells Depletion of nutrient/food Toxic by-products

OPENCOURSEWARE

Inspiring Creative and Innovative Minds

ocw.utm.my

BY NC

(cc)

080

SA

Inspiring Creative and Innovative Minds

Generate energy by photosynthesis Increase DO level in water under sunlight

Rapid production at high N and P

- Too much algae cause:
 - Taste and smell problems
 - Reduce light penetration
 - Die degraded and cause anaerobic condition

• Smallest micro-

organisms

- $0.01 0.3 \,\mu m$
- Parasite require host for

survival

• Hepatitis, flu, jaundice,

polio, AIDS

Inspiring Creative and Innovative Minds

Fungus

Inspiring Creative and Innovative Minds

ocw.utm.my

Plants that unable to do

photosynthesis

Strict aerobes

Tolerate low pH and nutrients

Yeast

Mould

Yeast

3-4 microns up to 40

microns

Heterothophs

Aerobes and facultatives Grow as single cells Fermentation industries -Bread, cake and alcohol Can cause infection ocw.utm.my

Moulds

Filamentous

Live in acidic condition

Reduce efficiency of

secondary sedimentation tank

Cause unpleasant smell and

taste

Protozoa

Inspiring Creative and Innovative Minds

Unicellular organisms with size 10 – 100 um

Aerobe and mobile

Digest bacteria and algae

Degrade dissolved and non dissolved organics

Act as 'cleaning agent' in treatment plant

Cause disease related to stomach

Rotifer

Inspiring Creative and Innovative Minds

Multi-cellular organisms

Bacteria and organic particles as energy sources

Indicate plant efficiency (high DO and low organic matter)

