

SSCM 1313
C++ COMPUTER PROGRAMMING

Chapter 1:

Introduction to Programming
Language

Authors:

Farhana Johar
Professor Dr. Shaharuddin Salleh

Chapter 1

C++ is a general-purpose programming language that evolves in the early 1980’s. This

language extends from the popular C language whose procedural approach became a

model to other languages in its class. C does not support the object-oriented style of

programming, but this deficiency is overcome through its extension into C++. With this

extension, C++ now supports both the object-oriented as well as the procedural type

of programming.

Definition 1.1: Procedural programming involves breaking down the problem

into several procedures or modules or functions, where a solution to the

problem is obtained by solving these modules.

Definition 1.2: Object-oriented programming involves breaking down the problem

into some entities called objects, where a solution to the problem is obtained

through a series of control and manipulation over these objects.

Code1A.cpp: The very first C++ program.

#include<iostream>

using namespace std;

void main()
{

cout << "Welcome to C++ ...a language we all hate to love" << endl;
cin.get();

}

statement
A single and complete instruction in

the program which ends with the

 symbol ;

directive
An instruction to the compiler for

controlling the program, for example,

 to include a header file.

Compile, Link and Go

MyCode.cpp
.h files

Compiler

MyCode.obj library files

Linker

MyCode.exe

Program Design

Problem Formulation Commissioning

Feasibility Study System Validation

System Design Coding and Testing

Algorithm

 



 








5

1

7

1

22

10

1

2

74

31

i i

ii

i

ii

yx

yx

z

Read the equation;

Read the input data;

Find the numerator value;

Find the denominator value;

if the denominator is 0

No solution, so abandon the operation;

else

Divide the numerator by the denominator;

Display the result;

End if

Flowchart

Indicates the start or end of the program.

Indicates an assignment.

Decision making which indicates a test for conditional

branching of TRUE or FALSE.

Pseudocode

Read the values of

ix and
iy

Find 



10

1

2

i

ii yxu , 



5

1

2

i

ixv and 



7

1

2

i

iyw

Find up 31 , wvq 74 

if 0q

 No solution, so abandon the operation.

else

 Find
q

p
z 

 Display the result

End if

Start

Read the equation

Read the input data

Find the numerator

value

Find the denominator

value

Divide numerator over

denominator

Display the result

End

NO
YES

No Solution:

Abandon the operation

Is the

denominator

value 0?

Best Practices in C++

 Make a complete feasibility study to the problem before starting its design. Decide

whether C++ programming is necessary in providing the solution to the problem

in terms of costs, time, human factor and viability.

 In general, any application that has numerical solutions can be solved using C++.

Make sure the numerical solution to a problem exists by solving a simple version
of the problem using a calculator. 


 The designer should have the thorough knowledge in the concepts and solution

to the problem. Plan ahead. Develop algorithms, flowcharts and pseudocodes
before writing the codes. 


 Start writing the program in a small scale by working on a simple version of the

problem. Then slowly add one component to the problem at a time, until it
reaches the desired size. In that way, the program becomes manageable and easy
to modify. 


 Be object-oriented by organizing the variables, structures and functions into

classes. 


 Be structured and modular in the program design. 


 Declare the correct data types for variables and functions. Don’t use too many

variables unnecessarily. Also, maximize the use of local variables in order to
make the functions autonomous. 


 Use a lot of structures for relating the variables. 


 Avoid redundant statements. Use a lot of loops instead of repeating statements. 


 Limit the size of every function by dividing the task independently into several

functions. 


 Make the program scalable for supporting any size of data without the need to

revamp the whole program codes massively. 


 Provide a complete documentation in the program design so that it can be

referred later easily. 

Modeling and Simulation

Simulation can be implemented using three approaches: microscopic, macroscopic

and mesoscopic [1]. In the microscopic simulation, the detail physical and performance

characteristics, such as the properties of the elements that make up the problem are

considered. The simulation involves some tiny properties of the individuals or elements

that make up the pieces. The results from a microscopic simulation are always reliable

and accurate. However, this approach could be very costly and time consuming as data

from the individuals or elements are not easy to obtain.

An easier approach is the macroscopic simulation which considers the deterministic

factors of the whole population, rather than all the individuals or elements. In this

approach, factors such as the governing mathematical equations and their macro data

are considered. The steps in this approach may skip the detail components, and,

therefore, the results may not be as accurate as the one produced in the microscopic

approach. However, this approach saves time and is not as costly as the microscopic

approach.

A more realistic and practical approach is the mesoscopic simulation which

combines the good parts of the microscopic and macroscopic approaches to produce a

more versatile model. In this approach, some deterministic properties of the elements in

the system are integrated with the detail information to produce a workable model such

as in Bacteria Population Growth, Computational Fluid Dynamics, Finite Element

Modeling, Printed-Circuit Board Design, Wireless Sensor Networks or GPS Navigation

System.

MAIN REFERENCE:
Shaharuddin Salleh (2012), C++ Numerical

Programming.

