

## SSCE1993 ENGINEERING MATHEMATICS

# **VECTOR FUNCTIONS**

## DR RASHIDAH BINTI AHMAD ASSOC PROF DR MUNIRA BINTI ISMAIL



innovative • entrepreneurial • global

ocw.utm.my





#### **Vector Functions**

**Definitions:** Let *D* be a subset of real numbers. A vector function **F** with domain *D* is a correspondence that associates each number *t* in *D* with a unique vector  $\mathbf{F}(t)$  in two or three dimensions. The range of **F** consists of all vectors  $\mathbf{F}(t)$  of *t* in *D*.

A vector function whose range in R<sup>2</sup> and R<sup>3</sup> are

$$\mathbf{F}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$$
$$\mathbf{F}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

where f, g and h are scalar valued functions of real number t defined on domain of D respectively.





## **Vector Derivatives**

• Let  $\mathbf{F}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$  for some differentiable scalar function f(t), g(t) and h(t). Then

 $\mathbf{F}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$ 

- Let  $\mathbf{F}(t)$  be differentiable at  $t_0$  and that  $\mathbf{F}'(t_0) \neq 0$ . Then the tangent vector to the graph  $\mathbf{F}(t)$  at point t = 0 is given as  $\mathbf{F}'(t)$ .
- The unit tangent vector on the graph of  $\mathbf{F}(t)$ , denoted by **T**, is defined as  $\mathbf{T}(t) = \frac{\mathbf{F}'(t)}{\|\mathbf{F}'(t)\|}$
- If  $\mathbf{T}'(t) \neq 0$ , the principle unit normal vector to the graph  $\mathbf{F}(t)$ , denoted by N, is defined as  $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$





## **Vector Integrals**

Let  $\mathbf{F}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$  where f,g and h are continuous is t. Then the integral of  $\mathbf{F}(t)$  is the vector function

$$\int \mathbf{F}(t) dt = \left[ \int f(t) dt \right] \mathbf{i} + \left[ \int g(t) dt \right] \mathbf{j} + \left[ \int g(t) dt \right] \mathbf{k}$$

#### **Class Activity**

Find the unit tangent vector **T** and the principle unit normal vector **N** of  $\mathbf{F}(t)$  at the given t

**1.** 
$$F(t) = ti + tj + k$$
,  $t = 2$ 

2. 
$$\mathbf{F}(t) = 4\cos t \,\mathbf{i} + 4\sin t \,\mathbf{j} + 3t \,\mathbf{k}$$
, at  $t = \pi$ 





## Motion in space

If a particle moves along a curve given by the position vector  $\mathbf{r}(t)$ , where t is time, then

$$\mathbf{v} = \frac{d\mathbf{v}}{dt}$$

is the velocity and  $\|v\|$  is the speed of the particle respectively, while the acceleration of the particle is given by

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2}$$





## **Class Activity**

1. The position vector of a moving particle after a time t is given by  $\mathbf{r}(t) = e^{-t}\mathbf{i} + 2\cos 3t \, \mathbf{j} + 2\sin 3t \, \mathbf{k}$ 

Find the velocity, speed and the acceleration of the particle at t = 0.

2. The velocity of a particle moving in space is

$$\mathbf{v}(t) = t^2 \mathbf{i} + (6t + 1) \mathbf{j} + 8t^3 \mathbf{k}$$

Find the particle's position as a function of t if  $\mathbf{r}(0) = \mathbf{2i} + \mathbf{3j} + \mathbf{k}$ 

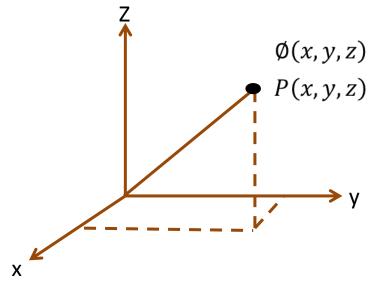




#### **Scalar Fields**

#### Definition:

If to each point P(x, y, z) of a region in space there is made to correspond to a scalar quantity  $\emptyset(x, y, z)$ , then  $\emptyset(x, y, z)$  is a scalar function and we say there is a scalar field in the region.







#### **Scalar Fields**

#### Definition:

Let  $\emptyset(x, y, z)$  be a scalar function that is defined and differentiable in a region. Then the gradient of  $\emptyset$ , written as **grad**  $\emptyset$ , is defined as

grad 
$$\emptyset = \nabla \emptyset = \frac{\partial \emptyset}{\partial x} \mathbf{i} + \frac{\partial \emptyset}{\partial y} \mathbf{j} + \frac{\partial \emptyset}{\partial z} \mathbf{k}$$

**Class Activity** 

If  $\phi(x, y, z) = 2xz^4 - x^2y$ , find grad  $\phi$  and  $\|\nabla \phi\|$  at P(2, 2, 1)

ocw.utm.my



## **Directional Derivatives**

#### **Definition:**

The directional derivative of  $\emptyset(x, y, z)$  at any point P along the curve, denoted by  $d\emptyset/ds$ , is defined as

$$\frac{d\emptyset}{ds} = \lim_{\Delta s \to 0} \frac{\Delta \emptyset}{\Delta s}$$

if the limit exists.

**Theorem:** If  $D_u \emptyset$  denotes the directional derivatives of  $\emptyset$  in the direction of the unit vector  $\mathbf{u}$ , then

 $D_u \phi = \nabla \phi \cdot \mathbf{u}$ 

By the geometrical property of the dot product,

 $\nabla \phi = \| \nabla \phi \| \| \mathbf{u} \| \cos \theta$  $= \| \nabla \phi \| \cos \theta$ 

Thus  $max\{D_u\emptyset\} = \|\nabla\emptyset\|$  $min\{D_u\emptyset\} = -\|\nabla\emptyset\|$ 





## **Class Activity**

The electrical potential *V* at the point P(x, y, z) is given by  $V = x^2 + 4y^2 + 9z^2$ . Find the rate of change of *V* at P(6, -3, 2) in the direction from *P* to the origin. Find the direction that produces the maximum rate of change of *V* at *P*. What is the maximum rate of change at *P*?

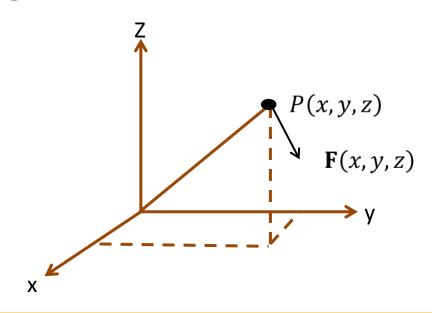




## **Vector Fields**

#### **Definition:**

If to each point P(x, y, z) of a region in space there is made to correspond to a vector quantity  $\mathbf{F}(x, y, z)$ , then  $\mathbf{F}(x, y, z)$  is a vector function and we say there is a vector field in the region.







## **Divergence of Vector Fields**

Divergence of vector fields is a scalar field to describe the extent to which the field diverges from a point.

Definition: Let

$$\mathbf{F}(x, y, z) = \mathbf{F}_1(x, y, z)\mathbf{i} + \mathbf{F}_2(x, y, z)\mathbf{j} + \mathbf{F}_3(x, y, z)\mathbf{k}$$

be a vector function that is defined and differentiable in a region. Then the divergence of  $\mathbf{F}$  is a scalar field, denoted by div  $\mathbf{F}$ , defined by

div 
$$\mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$



#### Gives $\mathbf{F}(x, y, z) = xe^{y}\mathbf{i} + e^{xy}\mathbf{j} + \sin yz\mathbf{k}$ Find div **F** at (1,0,3).





## **Curl of Vector Fields**

#### Definition: Let

 $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$  be a vector function that is defined and differentiable in a region. Then the curl of the vector  $\mathbf{F}$  is a vector field, denoted by **curl F**, defined by

 $\mathbf{curl} \, \mathbf{F} = \boldsymbol{\nabla} \times \mathbf{F}$ 

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1(x, y, z) & F_2(x, y, z) & F_3(x, y, z) \end{vmatrix}$$
$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$





## **Class Activity**

## Find curl F at point (2, -3, 4) for F(x, y, z) = xy i + yz j + xz k





#### REFERENCES

- Glyn James (2010). Advance Modern Engineering Mathematics, 4<sup>th</sup> Edition. Prentice Education Ltd.
- Howard Anton (2005). Multivariable Calculus, 8<sup>th</sup> Edition. John Wiley & Sons Inc.
- Kreysziq (2011). Advance Engineering Mathematics, 10<sup>th</sup> Edition. John Wiley & Sons Inc.
- Maslan Osman & Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yusdariah, Roselainy & Sabariah. Multivariable Calculus for Indpt. Learners, Revised 2<sup>nd</sup> Ed. 2011. Pearson Educ. Pub