

SSCE1993 ENGINEERING MATHEMATICS

MULTIPLE INTEGRALS

DR RASHIDAH BINTI AHMAD ASSOC PROF DR MUNIRA BINTI ISMAIL

DOUBLE INTEGRALS

DOUBLE INTEGRALS

Definition: Let z = f(x, y) be any continuous function on a region R in the xy-plane. Double integral of f over R is defined by

$$\iint\limits_R f(x,y) \ dA = \lim_{n \to \infty} \sum_{i=1}^n f(x_i, y_i) \ \Delta A_i$$

if the limit exists.

Iterated Integrals over Rectangular Region

Definition: If

 $R = \{(x, y) : a \le x \le b, c \le y \le d\}$ and f(x, y) is continuous in the rectangular region, then

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$

Example: Evaluate the iterated integral.

$$\int_{0}^{4} \int_{0}^{3} y \, dx \, dy$$

Solution:
$$\int_0^4 \int_0^3 y \, dx \, dy = \int_0^4 \left[\int_0^3 y \, dx \right] dy$$

$$= \int_0^4 [xy]_{x=0}^{x=3} dy$$

$$= \int_0^4 3y \, dy$$

$$= \frac{3y^2}{2} \Big|_0^4$$

$$= 24$$

Iterated Integrals over Non Rectangular Region

Integrating first with respect to *x*

Let f(x, y) be continuous on R where $R = \{(x, y): h_1(y) \le x \le h_2(y)\}, c \le y \le d$ with $h_1(y)$ and $h_2(y)$ continuous on [c, d] then

$$\iint_{R} f(x, y) dA$$

$$= \int_{c}^{d} \int_{h_{2}(y)}^{h_{1}(y)} f(x, y) dx dy$$

Iterated Integrals over Non Rectangular Region

Integrating first with respect to y

Let f(x, y) be continuous on R where

$$R = \{(x, y) : a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

with $g_1(x)$ and $g_2(x)$ continuous on [a,b] then

$$\iint\limits_R f(x,y) \, dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y) dy \, dx$$

Example: Evaluate $\iint_R xy \, dA$ where R is the region bounded by y=2x and $y=x^2$ in the first quadrant.

Solution:

The region of integration.

Integrating with respect to *y* first.

$$\int_0^2 \int_{x^2}^{2x} xy \, dy \, dx = \int_0^2 \left[\frac{xy^2}{2} \right]_{x^2}^{2x} dx$$
$$= \int_0^2 \left(2x^3 - \frac{x^5}{2} \right) dx$$
$$= \frac{8}{3}$$

Integrating with respect to x.

$$\int_{0}^{4} \int_{y/2}^{\sqrt{y}} xy \, dx \, dy = \int_{0}^{4} \left[\frac{x^{2}y}{2} \right]_{y/2}^{\sqrt{y}} dy$$
$$= \int_{0}^{4} \left(\frac{y^{2}}{2} - \frac{y^{5}}{8} \right) dx$$
$$= \frac{8}{3}$$

Double Integrals in Polar Coordinates

Changing from a Cartesian integral $\iint_R f(x,y) dA$ into polar coordinates.

Substitute $x = r \cos \theta$, $y = r \sin \theta$ and $dA = r dr d\theta$

$$\iint_{R} f(x,y) dA$$

$$= \iint_{R} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Example:

Evaluate $\iint_R (x^2 + y^2 + 1)dA$ where R is the region inside the circle $x^2 + y^2 = 4$

Double Integrals as Area and Volume

Theorem: If f(x, y) is a continuous and nonnegative on a region R, then

- i. The area of the region R is given by $\iint_R dA$
- ii. The volume of the solid beneath the surface and above the region R is given by $\iint_R f(x,y)dA$

- i) Find the area of the region enclosed by the parabola $y = x^2$ and the line y = x + 6
- ii) Use double integration to find the volume of solid bounded by the cylinder $x^2 + y^2 = 4$ and the plane x + z = 4

TRIPLE INTEGRALS

Triple Integrals in Cartesian Coordinates

Theorem: Let z = f(x, y, z) be any function that is continuous on a solid G where $G = \{x, y, z : a \le x \le b, c \le y \le d, k \le z \le l\}$ then

$$\iiint\limits_C f(x,y,z) \ dV = \int_a^b \int_c^d \int_k^l f(x,y,z) \ dz \ dy \ dx$$

The order of integration in the iterated integral can be interchanged.

Suppose *G* is a solid in the first octant bounded by

$$y = x^2$$
, $x + y = 1$, xy -plane and yz -plane.

- i. Evaluate ∭_G z dV
- ii. Find the volume of G

Triple Integrals in Cylindrical Coordinates

Relationship between Cartesian and cylindrical coordinates:

$$x = r \cos \theta$$

$$y = r \cos \theta$$

$$z = z$$

$$x^{2} + y^{2} = r^{2}, \quad \tan \theta = \frac{y}{x}$$

Triple Integrals in Cylindrical Coordinates

Let f be continuous function of r, θ and z on a bounded solid G. The triple integral of f over G is

$$\iiint\limits_G f(x,y,z)\ dV$$

$$= \iint\limits_{R} \int\limits_{h(r,\theta)}^{g(r,\theta)} f(r,\theta,z) \ r \ dz \ dr \ d\theta$$

where R is the region in the xy -plane described by polar coordinates.

- 1. Use cylindrical coordinates to find the volume of the solid bounded by $z = x^2 + y^2$ and $z = 8 x^2 y^2$
- 2. Use cylindrical coordinates to find the mass of the solid bounded by the surfaces $z = 4 x^2 y^2$, $z = x^2 + y^2$, $x^2 + y^2 = 1$ with density $\delta(x, y, z) = z$

Triple Integrals in Spherical Coordinates

Conversion formulas: Rectangular to spherical forms

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$
$$x^{2} + y^{2} + z^{2} = \rho^{2},$$

Let f be a continuous function of ρ , θ and \emptyset on a bounded solid G, then the triple integrals of f over G

$$\iiint_G f(\rho, \emptyset, \theta) dV = \iiint_G f(\rho, \emptyset, \theta) \rho^2 \sin \theta \ d\rho \ d\theta$$

- 1. Evaluate $\iiint_G \frac{dV}{\sqrt{x^2+y^2+z^2}}$ where G is the sphere $x^2+y^2+z^2\leq 9$
- 2. Find the center of mass of the solid bounded by surface $z = \sqrt{x^2 + y^2}$ and the plane z = 16

REFERENCES

- Glyn James (2010). Advance Modern Engineering Mathematics, 4th Edition. Prentice Education Ltd.
- Howard Anton (2005). Multivariable Calculus, 8th Edition. John Wiley & Sons Inc.
- Kreysziq (2011). Advance Engineering Mathematics, 10th Edition. John Wiley & Sons Inc.
- Maslan Osman & Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yusdariah, Roselainy & Sabariah. Multivariable Calculus for Indpt. Learners, Revised 2nd Ed. 2011. Pearson Educ. Pub