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DOUBLE INTEGRALS

Definition: Letz = f(x,y) be any continuous function
on a region R in the xy—plane. Double integral of f over
R is defined by
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if the limit exists.
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Iterated Integrals over Rectangular Region

Definition: If

R={(x,y);a<x<bc<y<d}and
f (x,y) is continuous in the rectangular

region, then
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Example: Evaluate the iterated integral.
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Solution: f: f03 ydxdy = f; “03 y dx] dy
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Iterated Integrals over Non Rectangular Region

Integrating first with respect to x

Let f(x,y) be continuous on R where
R={(x,y):hiy(y) <x < h,(¥)},c <y <d with h,(y) and
h,(y) continuous on [c, d] then
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Iterated Integrals over Non Rectangular Region

Integrating first with respect to y

Let f (x,y) be continuous on R where

R={(xy):a<x<b,g(x)<y<g,(x)
with g, (x) and g, (x) continuous on [a, b] then
y

A
b g2(x)
i | Feeyyda= f ) [ | Fxy)dy dx .

y=9g1(x)
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Example: Evaluate ff, xy dA where R is the region
bounded by y = 2x and y = x? in the first quadrant.

Solution: Integrating with respect to y first.

5 [xy212%
The region of integration. f f ; Xy dy dx = g [%]xz dx

Integrating with respect to x.

Jo L0 xy dax dy = f[ ]\F dy

F e

3



ocw.utm.my @H']:M

2 g

Double Integrals in Polar Coordinates

Changing from a Cartesian Example:

integral [f, f(x,y)dA into polar

coordinates. Evaluate [[, (x* +y?+ 1)dA
where R is the region inside
Substitute x =rcosf,y =rsin6 the circle x* + y* = 4

and dA = r drd6@

£ | rouy) aa

= fff(rcos@,rsin@ )r drd6
R
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Double Integrals as Area and Volume

Theorem: If f(x,y) is a continuous and
nonnegative on a region R, then

.  The area of the region R is given by

JI, dA

ii.  The volume of the solid beneath the
surface and above the region R is given

by [f, f(x,y)dA
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Class Activity

1) Find the area of the region enclosed by the
parabolay = x? and the liney = x + 6

ii) Use double integration to find the volume of solid
bounded by the cylinder x? + y? = 4 and the plane
x+z=4
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Triple Integrals in Cartesian Coordinates

Theorem: Let z = f(x, y, z) be any function that is continuous
onasolidGwhere G = {x,y,zza<x<bc<y<dk<z<Il}

then
J‘ﬂ‘f(X,y,z) dV = fbfdf;f(x;y,Z) dz dy dx
G a Jc

The order of integration in the iterated integral can be

interchanged. G050
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Class Activity

Suppose G is a solid in the first octant bounded by

y =x% x+vy=1, xy —plane and yz —plane.

. Evaluate [ff. z dV

li. Find the volume of G
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Triple Integrals in Cylindrical Coordinates

VA I
1 . Relationship between
2 ~|- _ . Cartesian and cylindrical
~~~~~~ _P(r,6,2) | coordinates:
o
| | X =1 coso
| >y | y =1 cosf
/?\r‘\ i Z=7Z
X2+ y2=7r2 tanf =

= <L
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Triple Integrals in Cylindrical Coordinates

Let f be continuous function of r,8 and z on a
bounded solid G. The triple integral of f over G is

Lf Fx,y,2) dV

g(r,0)

=-ﬂ f f(r,0,z) rdzdr df

R h(r0)

where R is the region in the xy —plane described by polar
coordinates.
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Class Activity

1. Use cylindrical coordinates to find the volume of the
solid bounded by z = x? + y? and z = 8 — x? — y?

2. Use cylindrical coordinates to find the mass of the solid
bounded by the surfaces z = 4 — x? — y?, z = x? + y?,
x? 4+ y? =1 with density 6 (x,y,2) = z
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Triple Integrals in Spherical Coordinates

Z
Conversion formulas: Rectangular to A
spherical forms | P(,0.6)
x = p sin@cosO
y = p sin@sinf
Z = p cosQ >y

x?+y?%+z% = p?,

X

Let f be a continuous function of p,8 and @ on a
bounded solid G , then the triple integrals of f over G

1. flo.0,0)av = [ff. f(p,®,6)p?sin® dp do do
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Class Activity

dVv
24y242z72

where G is the sphere

1. Evaluate [ 0 I
x?4+y%24+22<9

2. Find the center of mass of the solid bounded by surface
z = ./x? + y2 and the plane z = 16
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