

Thermodynamics I Chapter 4 First Law of Thermodynamics Open Systems

Mohsin Mohd Sies

Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia

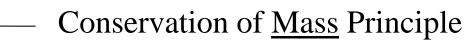
Innovative.Entrepreneurial.Global

ocw.utm.my

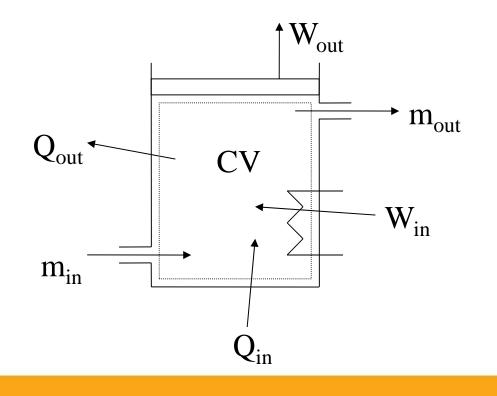
- A system changes due to interaction with its surroundings.
- Interaction study is possible due to conservation laws.
- Various forms of conservation laws are studied in this chapter in the form of balance equations.

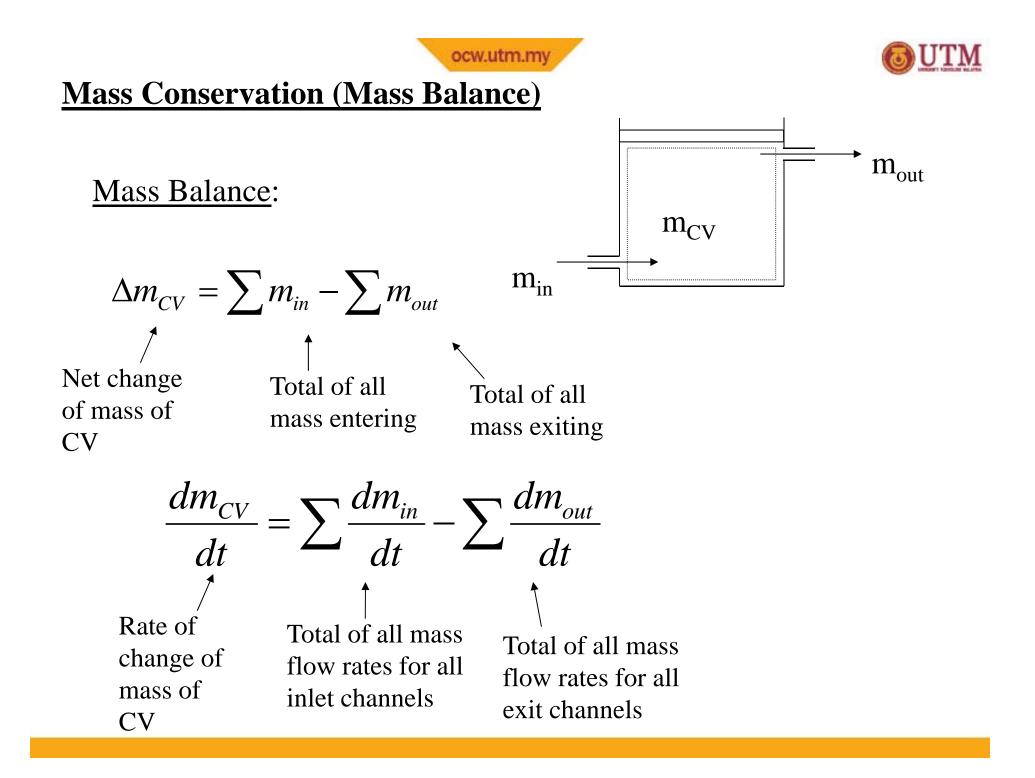
1ST LAW FOR OPEN SYSTEMS

<u>Energy</u> and <u>Mass</u> can enter/leave a system Divided into two parts:



- Conservation of <u>Energy</u> Principle1

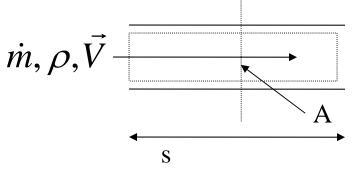




$$m = \rho v$$

 $m = \rho s A$

 $m - \alpha V$



For flow rates;

$$\frac{dm}{dt} = \rho \frac{ds}{dt} A$$
$$\dot{m} = \rho \vec{V}A$$

but

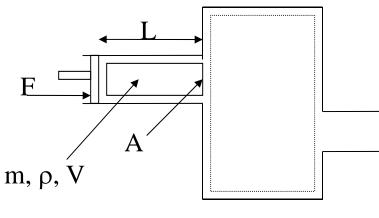
sA = V

Thus; $\dot{m} = \rho \vec{VA} = \frac{\vec{VA}}{v} = \rho \dot{V} = \frac{\dot{V}}{v}$

$$\frac{ds}{dt}A = \dot{V}$$

Flow Work

For an amount of mass to cross a boundary, it needs a force (work) to push it; called <u>Flow Work</u> , w_{flow}



The force that pushes the fluid;

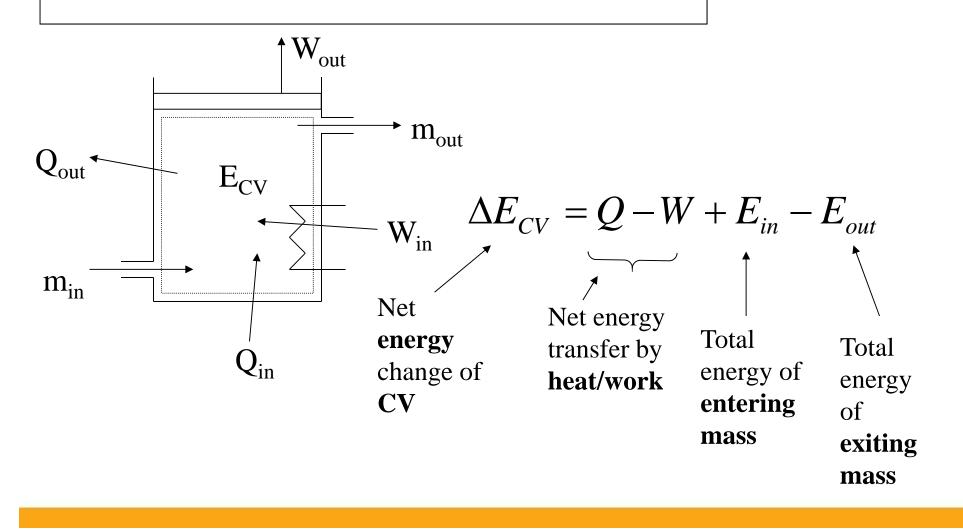
F = PA

Work that is involved; $W = \int F \cdot ds$ $W_{flow} = F \cdot L$ $= PA \cdot L$ = PV $W_{flow} = pv$

Conservation of Energy for Open Systems

Energy can enter/leave an open system via

Heat, Work AND Mass Flow Entering/Leaving



Energy of a Flowing Mass

An amount of mass possesses energy, E, e e = u + ke + pe

but a flowing mass also possesses flow work, so

the Energy for a flowing mass; e_{flow}

 $e_{flow} = u + ke + pe + w_{flow}$ = u + pv + ke + pe

but u + pv = h (enthalpy)

 $e_{flow} = h + ke + pe$

(energy for a <u>flowing mass</u>)

Energy Balance for an Open System can be written as;

$$\Delta E_{CV} = Q - W + E_{flow_{in}} - E_{flow_{out}}$$

or;

$$\Delta e_{CV} = q - w + e_{flow_{in}} - e_{flow_{out}}$$

$$= q - w + (h + ke + pe)_{in} - (h + ke + pe)_{out}$$

$$= q - w + \sum_{in} (h + ke + pe) - \sum_{out} (h + ke + pe)_{out}$$
Total of all work For each For each outlet

ocw.utm.my

but; $\Delta e_{CV} = (\Delta u + \Delta k e + \Delta p e)_{CV}$

so;

$$(\Delta u + \Delta ke + \Delta pe)_{CV} = q - w$$

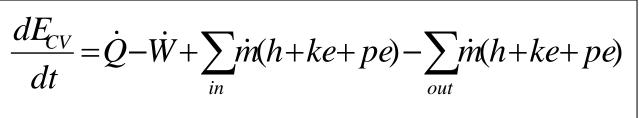
+ $\sum_{in} (h + ke + pe) - \sum_{out} (h + ke + pe)$

ocw.utm.my

Energy Balance in other forms;

$$\Delta E_{CV} = Q - W + \sum_{in} (H + KE + PE) - \sum_{out} (H + KE + PE)$$

Rate form;



(general form of Energy Balance for an Open System)

Steady Flow Process

Criteria;

All system properties (intensive & extensive) do not change with time m_{cv} = constant; Δm_{CV} = 0 V_{CV} = constant; ΔV_{CV} = 0 E_{CV} = constant; ΔE_{CV} = 0

Fluid properties at all inlet/exit channels do not change with time (Values might be different for different channels)

 $(\dot{m}, \vec{V}, A, etc.)$ Heat and work interactions do not change with time

 \dot{Q} = constant \dot{W} = constant

Implication of Criterion 1

(<u>Mass</u>) $\Delta m_{CV} = 0$, From Mass Conservation;

$$\sum \dot{m}_{in} - \sum \dot{m}_{out} = \Delta m_{CV}$$
$$\therefore \qquad \sum \dot{m}_{in} = \sum \dot{m}_{out}$$

Recall that

$$\dot{m} = \rho \vec{V}A = \frac{\vec{V}A}{v}$$

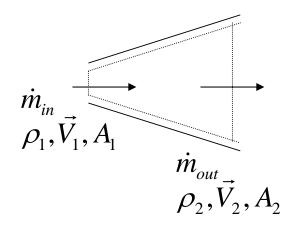
SO

$$\sum_{i=1}^{n} \rho_{i} \vec{V}_{i} A_{i} \bigg|_{in} = \sum_{o=1}^{k} \rho_{o} \vec{V}_{o} A_{o} \bigg|_{out}$$

$$\dot{m}_{in} = \dot{m}_{out}$$
$$\rho_1 \vec{V}_1 A_1 = \rho_2 \vec{V}_2 A_2$$

Implication of Criterion 1 (Mass) ctd.

for 1 inlet/ 1 exit;



ocw.utm.my

Implication of Criterion 1

 $(\underline{\text{Volume}})$ $\Delta V_{CV} = 0,$

••••

$$W_B = 0$$
(boundary work = 0)

$$\Delta E_{CV} = Q - W + \Sigma E_{flow(in)} - \Sigma E_{flow(out)}$$

$$W = W_{electrical} + W_{shaft} + W_{boundary} + W_{flow} + W_{etc.}$$

$$0 \qquad \text{in } \mathbf{h}$$

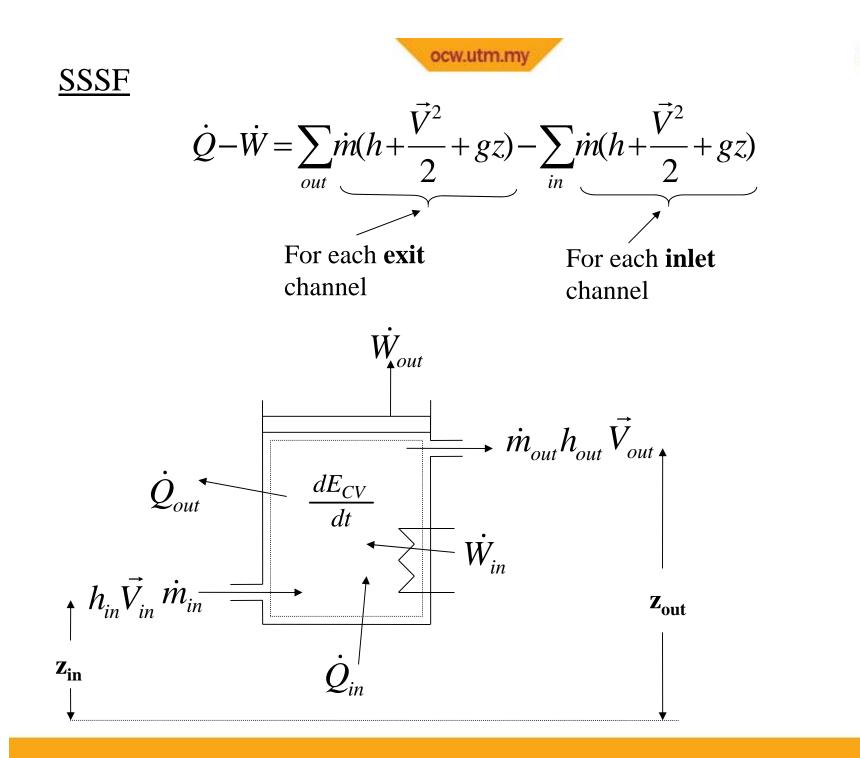
W not necessarily 0, only W_B is 0

ocw.utm.my

$\underline{\text{Implication of Criterion 1}}_{(\underline{\text{Energy}})}$ $\Delta E_{CV} = 0,$ From Energy Conservation; $\frac{dE_{CV}}{dt} = \dot{Q} - \dot{W} + \sum_{in} \dot{m}(h + ke + pe) - \sum_{out} \dot{m}(h + ke + pe)$ = 0

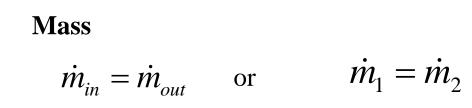
Rearrange to get Steady Flow Energy Equation

(SSSF)
$$\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$$



ocw.utm.my

SSSF energy equation for 1 inlet / 1 exit



Energy

$$\dot{Q} - \dot{W} = \dot{m}_2(h_2 + \frac{\vec{V}_2^2}{2} + gz_2) - \dot{m}_1(h_1 + \frac{\vec{V}_1^2}{2} + gz_1)$$
$$\dot{m}_1 = \dot{m}_2 = \dot{m}$$
$$\dot{Q} - \dot{W} = \dot{m} \left[(h_2 - h_1) + \left(\frac{\vec{V}_2^2 - \vec{V}_1^2}{2} \right) + g(z_2 - z_1) \right]$$
$$\frac{\dot{Q}}{\dot{m}} - \frac{\dot{W}}{\dot{m}} = (h_2 - h_1) + \left(\frac{\vec{V}_2^2 - \vec{V}_1^2}{2} \right) + g(z_2 - z_1)$$

 $q - w = \Delta h + \Delta k e + \Delta p e$ (1 inlet / 1 exit) ($\Delta = \text{exit} - \text{inlet}$)

<u>SSSF energy equation for multiple channels but</u> <u>neglecting Δke , Δpe </u>

$$\dot{Q} - \dot{W} = \sum \dot{m}_{out} h_{out} - \sum \dot{m}_{in} h_{in}$$

$$\sum \dot{m}_{in} = \sum \dot{m}_{out}$$

SSSF Applications

For devices which are open systems

(a) {Nozzle & Diffuser
 Turbine & compressor
 Throttling valve @ porous plug
 (b) {Mixing/Separation Chamber
 Heat exchanger(boiler, condenser, etc)

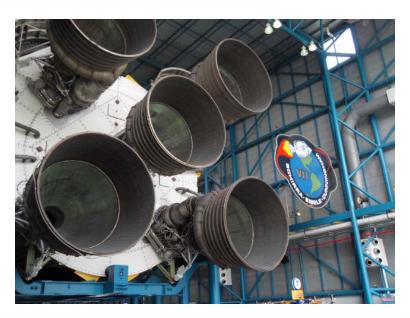
2 categories;

1 inlet / 1 outlet Multiple inlet / outlet

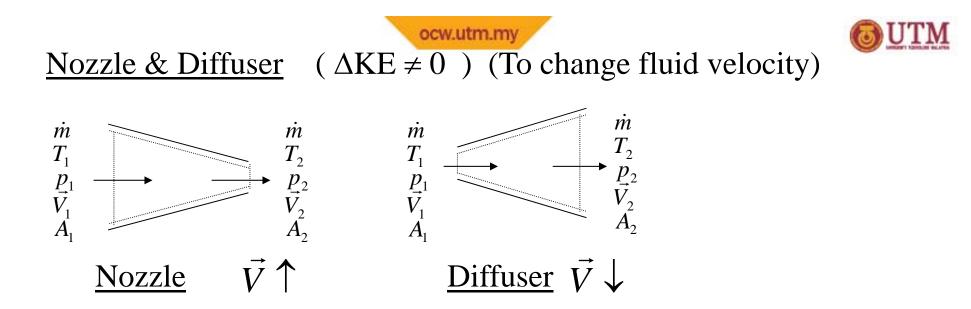
Analysis starts from the general SSSF energy

equation; $\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$

<u>Nozzle & Diffuser</u> ($\Delta KE \neq 0$) (To change fluid velocity)

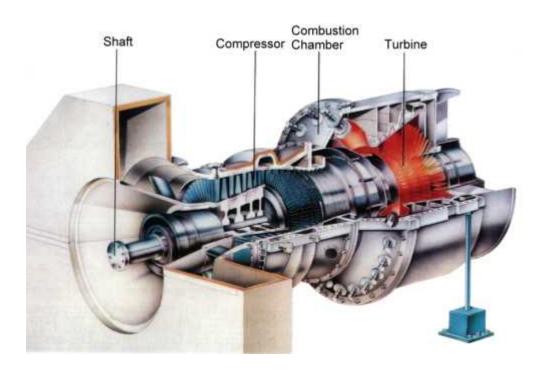


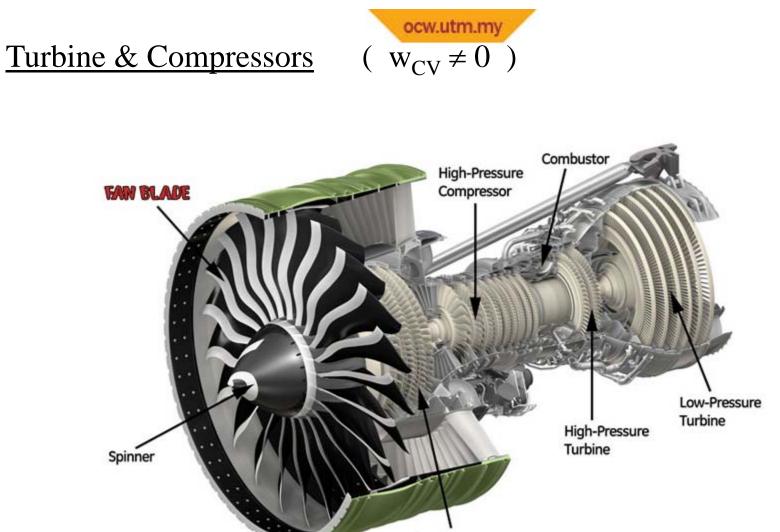
UTM



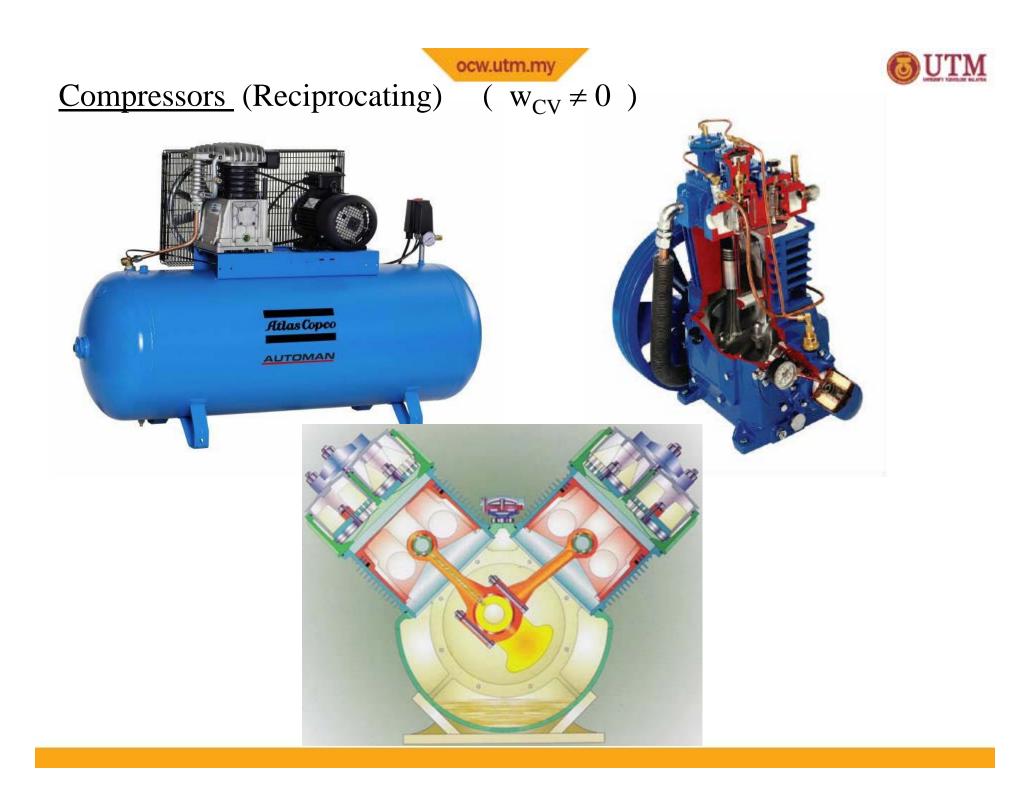
 $\frac{\text{Assumptions}}{\text{Const. volume}} \rightarrow w_{\text{B}} = 0$ No other work $\int w_{\text{CV}} = 0$ $\text{Small difference in height} \rightarrow \Delta \text{pe} = 0$ $\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$ 1 inlet / 1 outlet $q - \dot{W} = \Delta h + \Delta ke + \Delta \dot{p}e \qquad q = \Delta h + \Delta ke$

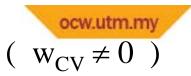
<u>Turbine</u> ($w_{CV} \neq 0$)

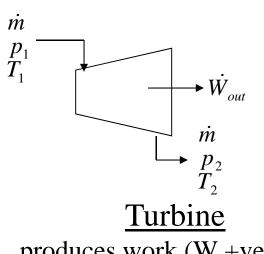




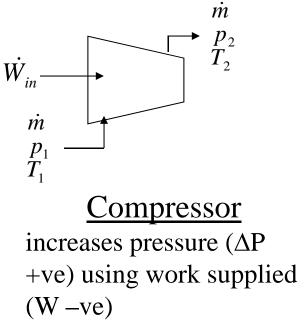
Low-Pressure Compressor (Booster)





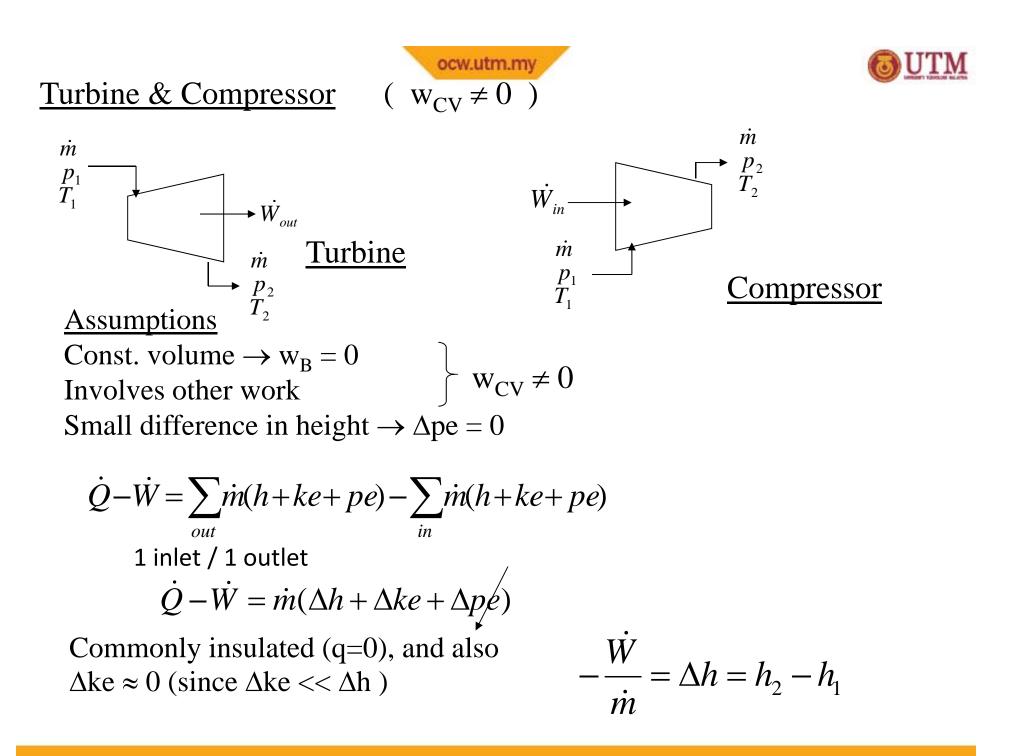


produces work (W +ve) from expansion of fluid (ΔP -ve)



Assumptions

Const. volume $\rightarrow w_{B} = 0$ Involves other work $W_{CV} \neq 0$ Small difference in height $\rightarrow \Delta pe = 0$

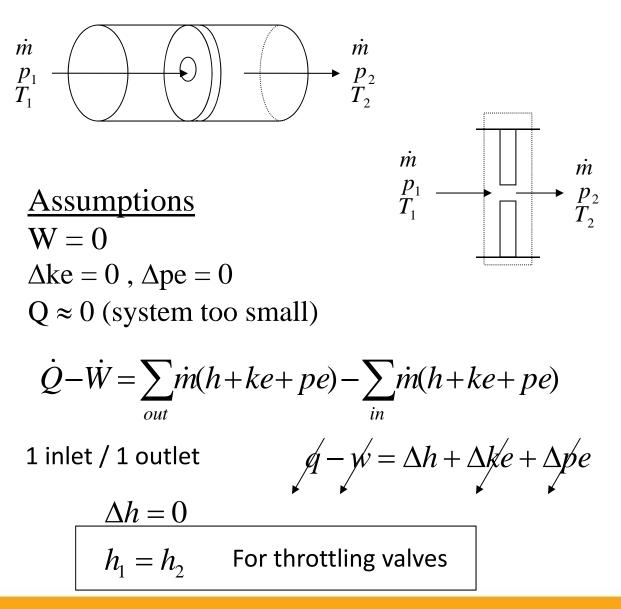


<u>Throttling valve/Porous plug</u> (const.enthalpy, h=c)

To reduce pressure without involving work

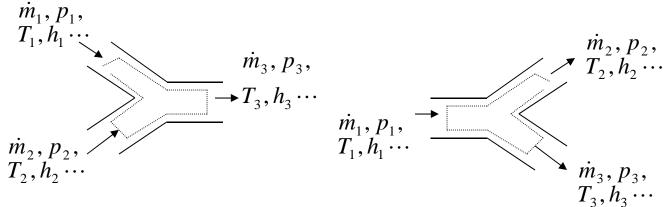
<u>Throttling valve/Porous plug</u> (const.enthalpy, h=c)

To reduce pressure without involving work



Mixing/Separation Chamber / T junction pipe

ocw.utm.my



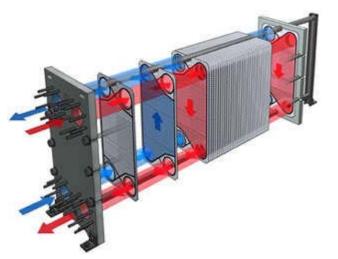
$\frac{Assumptions}{W_B} = 0$ Same pressure at all channels Other assumptions made accordingly

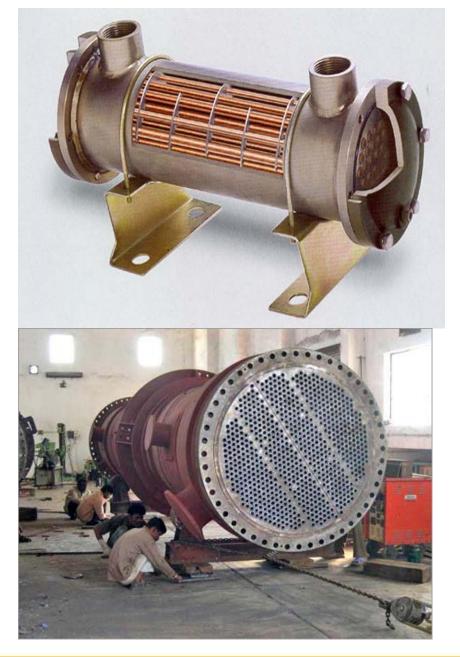
$$\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$$

also

$$\sum \dot{m}_{in} = \sum \dot{m}_{out}$$

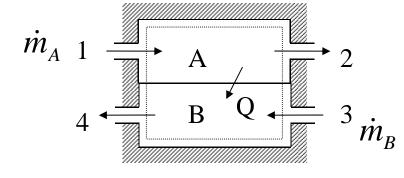
Heat Exchangers





ocw.utm.my

Heat Exchangers



<u>Assumptions</u> (System encompasses the whole heat exchanger) No work involved, W = 0 Insulated, Q = 0 Δke = 0, Δpe = 0

$$\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$$

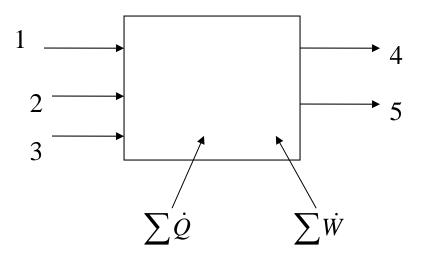
$$\sum \dot{m}_{in} h_{in} = \sum \dot{m}_{out} h_{out}$$

$$\dot{m}_{A}h_{1} + \dot{m}_{B}h_{3} = \dot{m}_{A}h_{2} + \dot{m}_{B}h_{4}$$
$$\dot{m}_{A}(h_{1} - h_{2}) = \dot{m}_{B}(h_{4} - h_{3})$$

also

$$\sum \dot{m}_{in} = \sum \dot{m}_{out}$$

General device (Black box analysis)



Assumptions made according to situation...

ocw.utm.my

$$\dot{Q} - \dot{W} = \sum_{out} \dot{m}(h + ke + pe) - \sum_{in} \dot{m}(h + ke + pe)$$

also

$$\sum \dot{m}_{in} = \sum \dot{m}_{out}$$