Thermodynamics I Chapter 2

Properties of Pure Substances

Mohsin Mohd Sies

Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia

Properties of Pure Substances (Motivation)

To quantify the changes in the system, we have to be able to describe the substances which make up the system.
The substance is characterized by its properties.
This chapter shows how this is done for two major behavioral classes of substance covered in this course; phase-change fluids, and gases.

PURE SUBSTANCE

3 major phases of pure substances;

- Solid
- Liquid
- Gas
- plasma

OPENCOURSEWARE

Phase Change of Pure Substances

 ex. Water at 1 atm of pressure

Not about to evaporate Heat added $\longrightarrow \mathbf{T} \uparrow$

Compressed liquid

 phase

Saturated liquid phase

Phase Change of Pure Substances (ctd.)
 ex. Water at 1 atm of pressure

All liquid evaporated (about to condense) Heat removed \longrightarrow condensation Saturated vapor phase

Not about to condense Heat added $\longrightarrow T \uparrow$
Superheated vapor phase

FIGURE 3-11
$T-\vee$ diagram for the heating process of water at constant pressure.

(a) $T-\vee$ diagram of a pure substance

(b) $P-\vee$ diagram of a pure substance

(a) $P-\vee$ diagram of a substance that contracts on freezing

(b) $P-\vee$ diagram of a substance that expands on freezing (such as water)

FIGURE 3-23

$P-T$ diagram of pure substances.

Innovative.Entrepreneurial.Global

FIGURE 3-24
$P-\mathrm{V}-\mathrm{T}$ surface of a substance that contracts on freezing.

FIGURE 3-25
$P-\mathrm{V}-T$ surface of a substance that expands on freezing (like water).

QUALITY, \mathbf{x} (2 phase condition)

Saturated liquid-vapor mixture condition \mathbf{x} is a thermodynamic property \mathbf{x} exists only in the liquid-vapor mixture region

$$
\begin{aligned}
& \text { Degree of } \\
& \text { evaporation }
\end{aligned}=\begin{aligned}
& \text { Dryness } \\
& \text { fraction }
\end{aligned}=\text { quality } \equiv \frac{m_{\text {vapor }}}{m_{\text {total }}}=x
$$

$\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$
(wet)
(dry)
100\% liquid

FIGURE 3-34
Quality is related to the horizontal distances on $P-\vee$ and $T-\vee$ diagrams.

Quality (cont.)

$$
x=\frac{m_{g}}{m_{g}+m_{f}} \quad 1-x=\frac{m_{f}}{m_{g}+m_{f}}
$$

$$
\begin{aligned}
x & \equiv \frac{m_{g}}{m_{g}+m_{f}} \\
& =\frac{v-v_{f}}{v_{g}-v_{f}} \quad=\frac{h-h_{f}}{h_{g}-h_{f}} \\
& =\frac{u-u_{f}}{u_{g}-u_{f}} \quad=\frac{s-s_{f}}{s_{g}-s_{f}}
\end{aligned}
$$

Some Additional Thermodynamic Properties

Internal Energy, U [kJ]
Specific Internal Energy, u [kJ/kg]
Enthalpy, H [kJ]

$$
\mathrm{H} \equiv \mathrm{U}+\mathrm{PV}
$$

Specific Enthalpy, h [kJ/kg]

$$
h=u+P v
$$

Entropy, S [kJ/K]
Specific Entropy, s [kJ/kg.K]

PROPERTY TABLES

3 types of tables
Compressed liquid table
Saturated table
Superheated table
Saturated tables
Temperature table - T in easy to read numbers Pressure table - P in easy to read numbers

Compressed Liquid Approximation

FIGURE 3-40

A compressed liquid may be approximated as a saturated liquid at the given temperature.

Choosing which table to use

!!!!Determine state (phase) first!!!!
How? Compare the given properties against the saturated table
(ex. given h \& T)
If $h_{f} \leq h \leq h_{g}$ at the given T
\rightarrow Mixture phase
\rightarrow use saturated table
If $h>h_{g}$ at the given T
\rightarrow Superheated phase
\rightarrow use superheated table
If $h<h_{f}$ at the given T
\rightarrow Compressed liquid phase
\rightarrow use saturated table

$$
\left.h \approx h_{f}\right|_{T}
$$

Choice of tables (cont.)

If $P \& T$ is given
$\mathrm{P} \leftrightarrow \mathrm{T}_{\text {sat }}$
$T \leftrightarrow P_{\text {sat }}$
$P>P_{\text {sat }}$ at the given T
$T<T_{\text {sat }}$ at the given P
$\mathrm{P}<\mathrm{P}_{\text {sat }}$ at the given T
$T>T_{\text {sat }}$ at the given P

Compressed liquid

Superheated vapor

Choice of tables (additional)

(ex. given h \& P)
If $h_{f} \leq h \leq h_{g}$ at the given P
\rightarrow Mixture phase
\rightarrow use saturated table
If $h>h_{g}$ at the given P
\rightarrow Superheated vapor phase
\rightarrow use superheated vapor table
If $h<h_{f}$ at the given P
\rightarrow Compressed liquid phase
\rightarrow use saturated table

$$
\begin{aligned}
\mathrm{P} \leftrightarrow \text { Tsat } \quad & h \neq\left. h_{f}\right|_{P} \\
h & \left.\approx h_{f}\right|_{\text {Tsat }}
\end{aligned}
$$

Notes on Using Property Tables

Some tables do not list \boldsymbol{h} (or \boldsymbol{u})
$\rightarrow \boldsymbol{u}($ or $\boldsymbol{h})$ can be obtained from $\mathbf{h}=\mathbf{u}+\mathbf{P v}$

Values for compressed liquid is taken as the same as that of saturated liquid at the same temperature
ex. $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{P}=1$ bar (compressed liquid)

Interpolation

Assume a \& b connected by a straight line

Employ concept of slope $\frac{\Delta y}{\Delta x}=$ constant

$$
\frac{\Delta v}{\Delta T}=\frac{v-v_{a}}{T-T_{a}}=\frac{v_{b}-v_{a}}{T_{b}-T_{a}}
$$

OPENCOURSEWARE

Ideal Gas

(Initial Observations)

IDEAL GAS

(for pressures much lower than critical pressure)
Equation of state for ideal gas

$$
\mathrm{PV}=\mathrm{mRT}
$$

R = Gas Constant [kJ/kg.K]
(constant for a gas, value depends on
type of gas)

$$
R=\frac{R_{u}}{M} \quad M=\text { Molecular mass }\left[\frac{\mathrm{kg}}{\mathrm{kmol}}\right]
$$

$$
R_{u}=\text { Universal Gas Constant }=8.314\left[\frac{\mathrm{~kJ}}{\mathrm{kmol} . \mathrm{K}}\right]
$$

$$
R=\frac{P_{1} V_{1}}{T_{1} m_{1}}=\frac{P_{2} V_{2}}{T_{2} m_{2}} \quad \begin{aligned}
& \text { Can be used to relate between } \\
& \text { different states }
\end{aligned}
$$

Ideal gas $\mathbf{u}, \mathbf{h}, \mathbf{c}_{\mathrm{p}}, \mathbf{c}_{\mathbf{v}}$ relationship

Constant Volume Specific Heat Capacity $\mathbf{c}_{\mathbf{v}}$

$$
c_{v}=\frac{d u}{d T}
$$

Constant Pressure Specific Heat Capacity, $\mathbf{c}_{\mathbf{p}}$

$$
c_{p}=\frac{d h}{d T}
$$

$$
\begin{aligned}
d u & =c_{v} d T \\
d h & =c_{p} d T \\
c_{p} & =c_{v}+R \\
\frac{c_{p}}{c_{v}} & =k=\text { specific heat ratio }
\end{aligned}
$$

$$
\begin{aligned}
c_{p} & =\frac{k R}{k-1} \\
c_{v} & =\frac{R}{k-1}
\end{aligned}
$$

POLYTROPIC PROCESS

-Processes that obey/follow the path

$$
\mathrm{pv}^{\mathrm{n}}=\mathrm{c}
$$

$\mathrm{n}=$ polytropic index $\quad-\infty \leq n \leq \infty$

$$
p_{1} v_{1}{ }^{n}=p_{2} v_{2}{ }^{n}
$$

Can be used to relate between two states

Some special cases for polytropic processes

$$
\begin{array}{ll}
\mathrm{n}=1 & \text { isothermal } \\
\mathrm{n}=0 & \text { isobaric } \\
\mathrm{n}= \pm \infty & \text { const. volume }
\end{array}
$$

Ideal Gas \& Polytropic Process combined

$$
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}=\left(\frac{v_{1}}{v_{2}}\right)^{n-1}
$$

Can be used to relate between two states

Real Gases \& Compressibility Factor

FIGURE 3-49
Comparison of Z factors for various gases.
Source: Gour-Jen Su, "Modified Law of Corresponding States," Ind. Eng. Chem. (international ed.) 38 (1946), p. 803.

OPENCOURSEWARE

Real Gases

Z

ocw.utm.my

Compressibility Factor

$$
Z=\frac{P v}{R T}=\frac{v}{R T / P}=\frac{v_{\text {actual }}}{v_{\text {ideal }}}
$$

Reduced
temperature

Reduced pressure

$$
P_{R}=\frac{P}{P_{\mathrm{Cr}}}
$$

$$
\begin{aligned}
& \text { Pseudo-reduced } \\
& \text { specific volume }
\end{aligned} \quad v_{R}=\frac{v_{\text {actual }}}{R T_{c r} /_{P_{c r}}}
$$

FIGURE 3-47
Percentage of error $\left(\left[\mid v_{\text {table }}-v_{\text {ideal }} I / v_{\text {table }}\right] \times 100\right)$
involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

H2O (Water, Steam)
-

Property Tables !!!

Ideal Gas
Air,
N2, He, etc.
$\mathrm{pV}=\mathrm{mR} T$
\& other relations
$\mathrm{h}=\mathrm{cpT}$
$\mathrm{u}=\mathrm{cvT}$
etc.

Other Equations of State

Van der Waal's :

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T
$$

Beattie-Bridgeman :

$$
P=\frac{R_{u} T}{\bar{v}^{2}}\left(1-\frac{c}{\bar{v} T^{3}}\right)(\bar{v}+B)-\frac{A}{\bar{v}^{2}}
$$

Benedict-Webb-Rubin :

$$
P=\frac{R_{u} T}{\bar{v}}+\left(B_{0} R_{u} T-A_{0}-\frac{C_{0}}{T^{2}}\right) \frac{1}{\bar{v}^{2}}+\frac{b R_{u} T-a}{\bar{v}^{3}}+\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{v}^{3} T^{2}}\left(1+\frac{1}{\bar{v}^{2}}\right) e^{-\left(\gamma / \bar{v}^{2}\right)}
$$

Virial equations of state:

$$
P=\frac{R T}{v}+\frac{a(T)}{v^{2}}+\frac{b(T)}{v^{3}}+\frac{c(T)}{v^{4}}+\cdots
$$

The apparent and the implied

Some examples...

The Apparent	The Implied
Rigid tank	Constant volume $(\mathrm{V}=\mathrm{c})$
Frictionless cylinder, freely moving piston	Constant pressure $(\mathrm{p}=\mathrm{c})$

